Newton's Laws<span>. </span>Kepler's Laws<span> are wonderful as a description of the </span>motions<span> of the </span>planets<span>. However, they provide no explanation of why the </span>planets<span> move in this way. Moreover, </span>Kepler's<span> Third </span>Law<span> only works for </span>planets<span> around the Sun and does not apply to the Moon's orbit around the Earth or the moons of Jupiter.
!!hope this helpful to you!!
please mark this a !!brainliest answer!!</span>
Answer:
volt ÷ ampere
Explanation:
The mathematical form of Ohms law is given by :
V = IR
Where V is voltage
I is current
R is resistance

The unit of voltage is volt and that of current is ampere
Unit of resistance :

So, volt ÷ ampere is the same as the unit of resistance. Hence, the correct option is (a).
Answer:
39.240 W
Explanation:
Let's start by calculating the work done by the engine. We can assume that it is the same work done by the weight of the object to bring it from 40m to the surface: as much energy it takes to bring it up, the same ammount it takes to bring it down. Said work is 
At this point we can simply apply the definition of power, that is
, to get the power of the engine is 
Explanation:
The principle of an electric motor is based on the current carrying conductor which produces magnetic field around it. A current carrying conductor is placed perpendicular to the magnetic field so that it experiences a force.
The largest electric motors are used for ship propulsion, pipeline compression and pumped-storage applications with ratings reaching 100 megawatts. Electric motors are found in industrial fans, blowers and pumps, machine tools, household appliances, power tools and disk drives.
Answer:
an elevator stopped on the third floor a basketball shot into a hoop a sled sliding down a snowy hill a tow truck pulling a car out of a ditch