Answer:
heat required in pan B is more than pan A
Explanation:
Heat required to raise the temperature of the substance is given by the formula

now we know that both pan contains same volume of water while the mass of pan is different
So here heat required to raise the temperature of water in Pan A is given as


Now similarly for other pan we have


So here by comparing the two equations we can say that heat required in pan B is more than pan A
The motion of planets is separate to the motion of stars. Like everything in the sky, they rise in the east, and set in the west, because of the earth's rotation. But night by night, their position at a given time changes because of their orbit around the sun.
Answer:
V=14.9 m/s
Explanation:
In order to solve this problem, we are going to use the formulas of parabolic motion.
The velocity X-component of the ball is given by:

The motion on the X axis is a constant velocity motion so:

The whole trajectory of the ball takes 1.48 seconds
We know that:

Knowing the X and Y components of the velocity, we can calculate its magnitude by:

Hydroelectric plants are used to produce electricity is the statement that best explains the relationship between energy and motion.
<h3>Explains the relationship between energy and motion in the process?</h3>
There is direct relationship between energy and motion in the process because if we increase the motion of the turbines, more electricity is produced in the generator and vice versa.
So we can conclude that the relationship between energy and motion in the process is directly proportional to each other.
Learn more about energy here: brainly.com/question/13881533
#SPJ1