Answer:
(7.8) x (9.8 m/s) = 76.44 m/s
during the time he spent falling.
Since his falling speed was zero when he 'stepped' off of the top,
he hit the ground at 76.44 m/s.
That's about 170 miles per hour.
I'll bet he left one serious crater!
I hope this helps too! :D
Explanation:
Answer:
you must throw 3 snowballs
Explanation:
We can solve this exercise using the concepts of conservation of the moment, let's define the system as formed by the refrigerator and all the snowballs. Let's write the moment
Initial. Before bumping that refrigerator
p₀ = n m v₀
Where n is the snowball number
Final. When the refrigerator moves
pf = (n m + M) v
The moment is preserved because the forces during the crash are internal
n m v₀ = (n m + M) v
n m (v₀ - v) = M v
n = M/m v/(vo-v)
Let's look for the initial velocity of the balls, suppose the person throws them with the maximum force if it slides in the snow (F = 100N), let's use the second law and Newton
F = m a
a = F / m
The distance the ball travels from zero speed to maximum speed is the extension of the arm (x = 1 m), let's look kinematically for the speed of the balls when leaving the arm
v₁² = v₀² + 2 a x
v₁² = 0+ 2 (100/1) 1
v₁ = 14.14 m / s
This is the initial speed for the crash
v₀ = v = 14.14 m / s
Let's calculate
n = M/m v/ (v₀-v)
n = 10/1 3 / (14.14 -3)
n = 2.7 balls
you must throw 3 snowballs
Formed of ice,rock,and dust
Answer:
4 half-lives will occur during this period of time.
Explanation:
Formula used :
where,
a = amount of reactant left after n-half lives and time t
= Initial amount of the reactant.
decay constant
= half life of an isotope
n = number of half lives
We have :
a = ?
t = 552 days
n = 4
4 half-lives will occur during this period of time.
An <span>incandescent light bulb is shown in the picture. The filament is the one labelled with number 3. This is a wire made usually of tungsten where the current passes to complete the flow of the electrons from the source to itself as the load. The tungsten material offers a quantity of resistance in ohms. The relationship between the current (I) , resistance (R) and voltage (V) is expressed by the Ohm's Law: V=IR. The voltage across the bulb is directly proportional to the current passing through it with the resistance of the material as its constant of proportionality.
In short, the voltage and current are related through the filament's resistance according to Ohm's Law.</span>