gravitational force between two objects is given as
F = G m₁ m₂/r²
where m₁ = mass of first object , m₂ = mass of second object , r = distance between the two objects .
Initial case :
m₁ = m₂ = m
gravitational force between the objects is given as
F = G m²/r²
Final Case :
m₁ = m₂ = 3 m
new gravitational force between the objects is given as
F' = G (3m)²/r²
F' = 9 G m²/r²
F' = 9 F
hence the gravitational force between the two objects becomes 9 times.
Answer: Sodim hydroxide have a formula of NaOH . So the elements present in the compound is sodium,oxygen and hydrogen.
Explanation:
Answer:
His first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. This is normally taken as the definition of inertia.
Explanation:
Answer:
A) continue to move to the right, with its speed increasing with time.
Explanation:
As long as force is positive , even when it is decreasing , it will create positive increase in velocity . Hence the body will keep moving with increasing velocity towards the right . The moment the force becomes zero on continuously decreasing , the increase in velocity stops and the body will be moving with the last velocity uniformly towards right . When the force acting on it becomes negative , even then the body will keep on going to the right till negative force makes its velocity zero . D uring this period , the body will keep moving towards right with decreasing velocity .
Hence in the present case A , is the right choice.
The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!