The molar<span> volume of an ideal gas is therefore 22.4 dm</span>3<span> at </span>stp<span>. And, of course, you could redo this calculation to find the volume of 1 mole of an ideal gas at room temperature and pressure - or any other temperature and pressure.</span>
<span>In a salt solution (a solution of water (H2O) and Salt, chemical formula NaCl), the positively charged Hydrogen atoms from water form bonds with the negatively charged Chloride atoms of Salt (which is the formulate NaCl), and the negatively charged oxygen atom of water (one atom per water molecule) form a bond with the positively charged Sodium ions (Na) of salt.</span>
Answer:
0.0613 L
Explanation:
Given data
- Initial pressure (P₁): 1.00 atm
- Initial volume (V₁): 1.84 L
- Final pressure (P₂): 30.0 atm
Since we are dealing with an ideal gas, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 1.00 atm × 1.84 L / 30.0 atm
V₂ = 0.0613 L
Answer:
17.09g/L
Explanation:
Density = total mass of elements/ volume
We need to find the mass of each mixture constituents using their molar mass:
mole = mass/molar mass
For Neon (Ne) which contains 0.650mol;
0.650 = mass/20.18
mass = 0.650 × 20.18
mass = 13.12g
For Krypton (Kr) which contains 0.321mol;
0.321 = mass/83.79
mass = 0.321 × 83.79
mass = 26.89g
For Xenon (Xe) which contains 0.190mol;
0.190 = mass/131.3
mass = 0.190 × 131.3
mass = 24.95g
Total mass = 13.12g + 26.89g + 24.95g = 64.96g
Density = total mass / volume
Density = 64.96g / 3.80L
Density of the mixture = 17.09g/L
Answer:
Explanation:
First digit of the 2p^3 gives you value of n, in this case its = 2, So, n= 2
Second alphabet gives you the value of l,
l=0 =s
l=1 =p
l=3=d
l=4=f
since "p" is the alphabet in 2p^3, so in your case lt shoudlbe = 1 right?
ml= -l to +l , that is -1, 0, +1
Ms= +1/2 or -1/2 alaways remains same foe evrything.