Answer:
The ratio 35Cl/37Cl = 3/1
Explanation:
<u>Step 1:</u> Data given
Chlorine has 2 isotopes:
- mass = 35 g/mol
- mass = 37 g/mol
Average molar mass of chlorine = 35.5 grams
<u>Step 2: </u>Calculate the % of isotopes
35x + 37y = 35.5
x+y = 1 or x = 1-y
35(1-y) + 37y = 35.5
35-35y +37y = 35.5
0.5 = 2y
y = 0.25 = 37Cl
x = 1 - 0.25 = 0.75 = 35Cl
<u>Step 3: </u>
The ratio 35Cl/37Cl = 0.75/0.25 = 3/1
Blood.
<span>Blood is heterogeneous because it has corpuscles (blood cells and platelets) physically suspended in blood plasma. Blood plasma and the corpuscles have different properties and can be separated by methods such as centrifugation. Also, blood is considered a colloid suspension because it has the properties of both a colloid and a suspension. This is because the blood plasma acts as a colloid. More so, if blood was left to settle,then the blood cells would collect at the bottom hence taking the characteristic of a suspension. </span>
<span>Salad dressing.</span>
<span>Depending on the type of salad, it can either be a heterogeneous or homogeneous mixture. If the salad dressing is only of vinegar or any other oil, then it is a homogenous mixture. However, if it involves a mixture of vinegar and other oils, pepper, herbs, and etcetera, then it is a heterogeneous mixture</span>
White tern catches fish including crustaceans, flying fish, squid, and others. Prior of plunging into water, it hovers initially over the water surface and then either dives or dips in the surface, without getting entirely submerged into water, and catches its target.
The food or fish is captivated in its small, however, sharp black beak that is specific as it bent upwards and tapers to a sharp point. It also possesses a long slender body with tapering, long wings, all of which encourage its diving or dipping activity into the surface of the water.
Answer:
Part A
Given that the graph is symmetrical and bell shaped, the average kinetic energy is given by the midline of graph, which corresponds to the common speed of the highest number of the population
Part B
The formula for the average kinetic energy, K.E. = (3/2)·(R/NA)·T
Therefore, the part of the graph that indicates the temperature of the sample is the average kinetic energy. K.E.
Part C
At a lower temperature, the heat is less evenly distributed and we have the distribution T2 higher than T1
Please see the attached graph created with MS Visio
Explanation: