_Mg + _HCL = _MgCl2 + H2
Separate the terms on each side:
_Mg + _HCl = _MgCl2 + H2
Mg- 1 Mg-1
H-1 H-2
Cl-1 Cl-2
Mg is balanced on both sides so move on to the next (put a 1 in the space).
1Mg
There are two H's and two Cl's on the results side, so to balance the equation put a 2 as a coefficient for HCl and it'll all balance out.
2HCl
Balamced equation will be:
1Mg + 2HCL = 1MgCl2 + H2
Initial Conditions:
Volume= v1= 417 cm³
Temperature= T1 = 278 K
Final Conditions:
Temperature= T2 = 231K
Volume = v2 =?
Use the general gas equation;
P1*v1/T1 = P2*v2/T2
As, the temperature is constant;
So,
v1/T1 = v2/T2
417/278 = v2/231
v2= 346.5 cm³
In 1869 Russian chemist DIMITRI MENDELEEV started the development of the periodic table,arranging chemical elements by atomic mass. He predicted the discovery of other elements and left spaces open in his periodic table for them. HOPE THIS HELPSS HAVE A GREAT DAY <333
Answer: the answer is c.The unbalanced push causes the cart to speed up.
Explanation:
The application of an unbalanced force (the push) causes the cart to speed up. When the cart is in constant motion, the forces are balanced and there is no speeding up. Once an unbalanced force is added, the cart's speed changes.
<u>Answer:</u> For the given equation, only iron has the value of
equal to 0 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(Fe(s))})+(3\times \Delta H^o_f_{(CO_2(g))})]-[(3\times \Delta H^o_f_{(CO(g))})+(2\times \Delta H^o_f_{(Fe_2O_3(s))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Fe%28s%29%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%5D-%5B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Fe_2O_3%28s%29%29%7D%29%5D)
The enthalpy of formation for the substances present in their elemental state is taken as 0.
Here, iron is present in its elemental state which is solid.
Hence, for the given equation, only iron has the value of
equal to 0 kJ.