Answer: 1.91*10^8 N/m²
Explanation:
Given
Radius of the steel, R = 10 mm = 0.01 m
Length of the steel, L = 80 cm = 0.8 m
Force applied on the steel, F = 60 kN
Stress on the rod, = ?
Area of the rod, A = πr²
A = 3.142 * 0.01²
A = 0.0003142
Stress = Force applied on the steel/Area of the steel
Stress = F/A
Stress = 60*10^3 / 0.0003142
Stress = 1.91*10^8 N/m²
From the calculations above, we can therefore say, the stress on the rod is 1.91*10^8 N/m²
Answer:
P = 40.7kPa
Explanation:
To find the pressure on a surface 6 meter below you use the following formula, which takes into account the heights in which pressures are measured and also the density of the fluid and the gravitational acceleration:
(1)
P2: pressure for a height of -6 m = ?
P1: pressure for a height of -2 m = 1.5kPa = 1500 Pa
ρ: density of water = 1000kg/m^3
g: gravitational acceleration = 9.8 ms^2
y2: -6m
y1: -2m
(the height is measure from the water level, because of that, the heights are negative)
You solve the equation (1) for P1:
(2)
Next, you replace the values of all variables in equation (2):

hence, the pressure on a surface 6 m below the water level is 40.7kPa
Answer:
what are the answer choices
Explanation:
Based on the length of side of the cube given, the length of the needle is 2.28 inches.
<h3>What is the length of the needle?</h3>
The length of the side of a cube and its diagonal are related by the formula below:

where s is length of side



Therefore, the length of the needle is 2.28 inches
Learn more about length of diagonal of cube at: brainly.com/question/800212
#SPJ4