The magnitude of the electric field at the third vertex of the triangle is determined as zero.
<h3>Electric field at the third vertex of the triangle </h3>
The electric field at the third vertex of the equilateral triangle due to the other charges placed on the first and second vertices is calculated as follows;
E = E(13) + E(23)
E = (kq₁)/r² + (kq₂)/r²
where;
- q1 is positive charge
- q2 is negative charge
E = (kq₁)/r² - (kq₂)/r²
E = 0
Thus, the magnitude of the electric field at the third vertex of the triangle is determined as zero.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
Answer:
I think the answer is 0.2 m/s2
Explanation:
We want to find the combined volume of 3 tennis balls. We will get that the combined volume is 493.7 cm^3
First, remember that for a sphere of diameter D, the volume is:

Where 3.14 is pi.
Here we know that the average diameter of a tennis ball is 6.8cm, then we can replace that in the above equation to find the volume (in average) of a single tennis ball:

Now, in 3 balls of tennis, the combined volume will be 3 times the above one, this is:

If you want to learn more about volumes, you can read:
brainly.com/question/10171109
Answer:
v ’= 21.44 m / s
Explanation:
This is a doppler effect exercise that changes the frequency of the sound due to the relative movement of the source and the observer, the expression that describes the phenomenon for body approaching s
f ’= f (v + v₀) / (v-
)
where it goes is the speed of sound 343 m / s, v_{s} the speed of the source v or the speed of the observer
in this exercise both the source and the observer are moving, we will assume that both have the same speed,
v₀ = v_{s} = v ’
we substitute
f ’= f (v + v’) / (v - v ’)
f ’/ f (v-v’) = v + v ’
v (f ’/ f -1) = v’ (1 + f ’/ f)
v ’= (f’ / f-1) / (1 + f ’/ f) v
v ’= (f’-f) / (f + f’) v
let's calculate
v ’= (3400 -3000) / (3000 +3400) 343
v ’= 400/6400 343
v ’= 21.44 m / s
Answer:
Farm = 98.1 [N]
Explanation:
To solve this problem we must draw the respective free body diagram, with the forces acting on the monkey. An analysis of the sums on the y-axis must be performed, in this axis the weight is acting down and the forces of both arms pulling up.
Weight is defined as the product of mass by gravitational acceleration.
W = m*g
where:
m = mass = 20 [kg]
g = gravity acceleration = 9.81 [m/s²]
W = 196.2 [N] (units of Newtons)
As this force points down, the force of both arms must go up, therefore each arm exerts a force of:
Farm = 196.2 / 2
Farm = 98.1 [N]