Answer is: a. Rubidium (Rb) is more reactive than strontium (Sr) because strontium atoms must lose more electrons.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Alkaline metals (group 1), in this example rubidium, have lowest ionizations energy and easy remove valence electrons (one electron), they are most reactive metals.
Earth alkaline metals (group 2), in this example strontium, have higher ionization energy than alkaline metals, because they have two valence electrons, they are less reactive.
Rubidium electron configuration: ₃₇Rb 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s¹; one valence electron is 5s¹ orbital.
Strontium electron configuration: ₃₈Sr 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s²; two valence electrons is 5s² orbital.
Answer:
Percentage abundance of 121 Sb is = 57.2 %
Percentage abundance of 123 Sb is = 42.8 %
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
Since the element has only 2 isotopes, so the let the percentage of first be x and the second is 100 -x.
For first isotope, 121 Sb :
% = x %
Mass = 120.9038 u
For second isotope, 123 Sb:
% = 100 - x
Mass = 122.9042 u
Given, Average Mass = 121.7601 u
Thus,

Solving for x, we get that:
x = 57.2 %
<u>Thus, percentage abundance of 121 Sb is = 57.2 %
</u>
<u>percentage abundance of 123 Sb is = 100 - 57.2 % = 42.8 %</u>
Coppers molecular weight is 63.546 u
Answer:
1.3 × 10²³ Atoms of Mercury
Solution:
Step 1: Calculate Mass of Mercury using following formula,
Density = Mass ÷ Volume
Solving for Mass,
Mass = Density × Volume
Putting values,
Mass = 13.55 g.cm⁻³ × 3.2 cm³ ∴ 1 cm³ = 1 cc
Mass = 43.36 g
Step 2: Calculating number of Moles using following formula;
Moles = Mass ÷ M.mass
Putting values,
Moles = 43.36 g ÷ 200.59 g.mol⁻¹
Moles = 0.216 mol
Step 3: Calculating Number of Atoms using following formula;
Number of atoms = Moles × 6.022 ×10²³
Putting value of moles,
Number of Atoms = 0.216 mol × 6.022 × 10²³
Number of Atoms = 1.3 × 10²³ Atoms of Hg
B.2C2H6 + 5O2 >2CO2 +3H2O