<span>So we want to know which statement is true for the body of mass m=2000kg that is lifted to a height of h=15m in t=15 s. Lets calculate each of the following: Gravity force on the body is F=m*g=2000*9.81=19620 N so a is FALSE. Potential energy of the body when it is lifted to the height of 15 m is Ep=m*g*h=2000*9.81*15=294300 J so b is FALSE. Work to lift the body is: W=Fg*h=2000*9.81*15= Ep=294300 J so c is FALSE. Power P=W/t=294300/15=19620 W So d is TRUE. </span>
Answer:
calculating displacement.
Explanation:
It's not true that displacement and distance would be the same always. Displacement is always smaller than or equal to distance as it is the smallest path between the initial and final point whereas distance is the measure of the total path covered.
In very very very round figures . . .
-- Jupiter is about 5.2 times as far from the sun as the earth is.
-- So when Jupiter and the EARTH are aligned in both orbits, Jupiter is about
(4.2) x (150 million kilometers) = 630 million kilometers
Time = (distance) / (speed)
The speed of light and radio is 300,000 km/second
Time = (630 million / 300 thousand)
<em>Time = 2,100 seconds</em>
That's 35 minutes.
The speed of the second satellite is less than the speed of the first satellite.
<h3>What is speed?</h3>
The speed of any moving object is the ratio of the distance covered and the time taken to cover that distance.
Given is a satellite is in a circular orbit around a planet. A second satellite is placed in a different circular orbit that is farther away from the same planet.
When the distance from the center of the orbit increases, the time to complete the orbit will be greater.
Thus, the speed of the second satellite is less than the speed of the first satellite.
Learn more about speed.
brainly.com/question/7359669
#SPJ1
The Kinetic<span> Molecular </span>Theory<span> explains the forces between </span>molecules<span> and the energy that </span>they<span> possess.
</span>