I don’t think we can answer this question with the information given. ANY ball thrown with ANY initial velocity v will be observed at a height h twice and with a time interval Δt.
This question is incomplete, the complete question is;
Now we will examine the electric field of a dipole. The magnitude and direction of the electric field depends on the distance and the direction. We will investigate in detail just two directions. With charges available in the simulation (all the charges are either positive or negative 1 nC increments).
how do you create a dipole with dipole moment 1 x 10-9 Cm with a direction for the dipole moment pointing to the right. Make a table below that shows the amounts of charge and the distance between the charges. There are many correct answers
Answer:
Given the data in question;
Dipole moment P = 1 × 10⁻⁹ C.m
now dipole pointing to the right;
P→
(-) ---------------->(+) 
d
so let distance between the dipoles be d
∴ P = d
Let
= 1 nC
so
P = d
1 × 10⁻⁹ = 1 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (1 × 10⁻⁹)
d = 1 m
Also Let
= 2 nC
so
P = d
1 × 10⁻⁹ = 2 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (2 × 10⁻⁹)
d = 0.5 m
Also Let
= 3 nC
so
P = d
1 × 10⁻⁹ = 3 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (3 × 10⁻⁹)
d = 0.33 m
such that;
charge distance
1 nC 1.00 m
2 nC 0.50 m
3 nc 0.33 m
4 nC 0.25 m
5 nC 0.20 m
True. In order for a chemical reaction between elements/compounds, the atoms within the chemicals must have sufficient energy in order to be able create a reaction.
The answer to this question is letter C) Each student read
the meter stick from different angles.
The students might have been reading the meter stick facing
each other. So when one reads the meter stick as 18, the other student will
read the reverse image of the measurement. 18 and 82 can be easily mistaken
when reversed.
<span>Doing a warm-up before exercise is important because it
strengthens your body and gets your body ready for the exercise you are about to do. If you do not do a warm-up, your body may grow tired a bit more quickly.
Hope this helped!
</span>