Answer:
63.53% yield
Explanation:
The balanced equation for this reaction is 2NaCl + H2O -> 2NaOH +Cl2
First we must find the limiting reactant
From NaCl we can only produce 6.06 grams of Cl2 in <u>theory</u>
From H20 we can only produce 38.995 grams in theory
so we know NaCl is the limiting
% yield is (Actual/Theoretical) x100 so
(3.85/6.06)x100= 63.53% yield
Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.
Answer:
Work
Explanation:
Work is defined as the ability to use energy in one second and its SI unit is same as energy that is joule.
Work refers to the energy utilized to displace an object over a distance by an external force in one direction and in given time period which can be one second as well.
Hence, the correct answer is "work".
Answer:
1.Metals
These are very hard except sodium
These are malleable and ductile pieces
These are shiny
Electropositive in nature
Non-metals
These are soft except diamond
These are brittle and can break down into pieces
These are non-lustrous except iodine
Electronegative in nature
2. The electrochemical series helps to pick out substances that are good oxidizing agents and those which are good reducing agents.In an electrochemical series the species which are placed above hydrogen are more difficult to be reduced and their standard reduction potential values are negative.
3. Arrhenius theory, theory, introduced in 1887 by the Swedish scientist Svante Arrhenius, that acids are substances that dissociate in water to yield electrically charged atoms or molecules, called ions, one of which is a hydrogen ion (H+), and that bases ionize in water to yield hydroxide ions (OH−).
4. The common application of indicators is the detection of end points of titrations. The colour of an indicator alters when the acidity or the oxidizing strength of the solution, or the concentration of a certain chemical species, reaches a critical range of values.