The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer:For example, standard atmospheric pressure (or 1 atm) is defined as 101.325 kPa. The millibar, a unit of air pressure often used in meteorology, is equal to 100 Pa. (For comparison, one pound per square inch equals 6.895 kPa.)
Explanation:A pascal is a pressure of one newton per square metre, or, in SI base units, one kilogram per metre per second squared.
I hope this helps.... I'm sorry if it doesn't