1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
3 years ago
5

Distinguish between resultant and equilibrant forces​

Physics
1 answer:
SIZIF [17.4K]3 years ago
4 0

Answer:

resultant is a single force that can replace the of a number of forces , equililbrant is a force that is exactly opposite to resultant

Explanation:

You might be interested in
A rifle fires a 2.01 10-2-kg pellet straight upward, because the pellet rests on a compressed spring that is released when the t
Zina [86]

Answer:

The value of spring constant is 266.01 \frac{N}{m}

Explanation:

Given:

Mass of pellet m = 2.01 \times 10^{-2} kg

Height difference of pellet rise h_{f} - h_{o} = 6.03 m

Spring compression x = 9.45 \times 10^{-2} m

From energy conservation law,

Spring potential energy is stored into potential energy,

  mg(h_{f} -h_{o})  = \frac{1}{2} kx^{2}

Where k = spring constant, g = 9.8 \frac{m}{s^{2} }

  k = \frac{2mg(h_{f} -h_{o} )}{x^{2} }

  k = \frac{2 \times 9.8 \times 6.03\times 2.01 \times 10^{-2} }{(9.45\times 10^{-2} )^{2} }

  k = 266.01 \frac{N}{m}

Therefore, the value of spring constant is 266.01 \frac{N}{m}

6 0
3 years ago
What is the intensity in W/m2 of a laser beam used to burn away cancerous tissue that, when 85.0% absorbed, puts 470 J of energy
Advocard [28]

Answer:

26036485.6433 W/m²

Explanation:

E= Energy = 470 J

t = Time = 4 seconds

d = Diameter = 2.6 mm

Power is given by

P=\dfrac{E}{t}

Intensity is given by

I=\dfrac{P}{\pi r^2}\\\Rightarrow 0.85I=\dfrac{E}{t\dfrac{\pi}{4} d^2}\\\Rightarrow I=\dfrac{470}{0.85\times 4\times \dfrac{\pi}{4}\times (2.6\times 10^{-3})^2}\\\Rightarrow I=26036485.6433\ W/m^2

The intensity of the laser beam is 26036485.6433 W/m²

8 0
3 years ago
Given a particle that has the velocity v(t) = 3 cos(mt) = 3 cos (0.5t) meters, a. Find the acceleration at 3 seconds. b. Find th
DiKsa [7]

Answer:

a.\rm -1.49\ m/s^2.

b. \rm 50.49\ m.

Explanation:

<u>Given:</u>

  • Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .

<h2>(a):</h2>

The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.

\rm a = \dfrac{dv}{dt}\\=\dfrac{d}{dt}(3\cos(0.5\ t ))\\=3(-0.5\sin(0.5\ t.))\\=-1.5\sin(0.5\ t).

At time t = 3 seconds,

\rm a=-1.5\sin(0.5\times 3)=-1.49\ m/s^2.

<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>

<h2>(b):</h2>

The velocity of the particle at some is defined as the rate of change of the position of the particle.

\rm v = \dfrac{dr}{dt}.\\\therefore dr = vdt\Rightarrow \int dr=\int v\ dt.

For the time interval of 2 seconds,

\rm \int\limits^2_0 dr=\int\limits^2_0 v\ dt\\r(t=2)-r(t=0)=\int\limits^2_0 3\cos(0.5\ t)\ dt

The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,

\Delta r=3\ \left (\dfrac{\sin(0.5\ t)}{0.05} \right )\limits^2_0\\=3\ \left (\dfrac{\sin(0.5\times 2)-sin(0.5\times 0)}{0.05} \right )\\=3\ \left (\dfrac{\sin(1.0)}{0.05} \right )\\=50.49\ m.

It is the displacement of the particle in 2 seconds.

7 0
3 years ago
A centrifuge used in DNA extraction spins at a maximum rate of 7000rpm producing a "g-force" on the sample that is 6000 times th
defon

Answer:

A) a = 73.304 rad/s²

B) Δθ = 3665.2 rad

Explanation:

A) From Newton's first equation of motion, we can say that;

a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.

Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s

Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s

We are given; t = 10 s

Thus;

a = 733.04/10

a = 73.304 rad/s²

B) From Newton's third equation of motion, we can say that;

ω² = ω_o² + 2aΔθ

Where Δθ is angular displacement

Making Δθ the subject;

Δθ = (ω² - ω_o²)/2a

At this point, ω = 0 rad/s while ω_o = 733.04 rad/s

Thus;

Δθ = (0² - 733.04²)/(2 × 73.304)

Δθ = -537347.6416/146.608

Δθ = - 3665.2 rad

We will take the absolute value.

Thus, Δθ = 3665.2 rad

8 0
3 years ago
Which is a characteristic of diatoms?
zlopas [31]

Answer:

b

Explanation:

8 0
3 years ago
Other questions:
  • A student places a large pot of cold water on a stove and heats it for one minute. Then she takes the pot of water off the burne
    9·1 answer
  • How could you show the effect that gravity has on you? Name 2 ways and explain how they would show that gravity affects you.
    12·1 answer
  • The peak intensity of radiation from Mars is about 14,000 nm. In what spectral band is this? ultraviolet, radio waves, visible l
    6·2 answers
  • What do gamma rays consist of?
    14·2 answers
  • How can waves travel through ground?
    5·1 answer
  • How do earths movements affect our view of the star
    15·2 answers
  • A frog has a pulmocutaneous artery and vein which compares to the human pulmonary artery and vein. What two organs do these bloo
    11·1 answer
  • Why is the heliocentric model not correct
    6·2 answers
  • What is the difference between real and apparent weightlessness?
    15·1 answer
  • Friction is a ____________ force<br> a. Artificial<br> b. Natural<br> c. Pessimistic<br> d. Negative
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!