Answer:
There is an overall release of energy when bonds form.
Explanation:
There is a general release of energy when bonds form. This energy is called bond energy.
Bond energy is involved in the breakdown or formation of one or more bonds between atoms of a molecule. Atoms bond with each other to achieve their electronic stability, that is, they move from a higher energy situation to a lower energy one. With this we can state that when the bond between atoms is formed, energy is released; therefore, its breakdown depends on energy absorption.
The central vacuole stores materials, wastes, and helps give the plant structure and support.
Hope this helps!
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.
Answer:
yes
Explanation:
it affects the bluebirds habitat
Matter - anything with mass and occupies space
accuracy - an indication of how close a measurement is to the correct result
precision - the degree to which a measurement can be replicated
meniscus - the curved top surface of a liquid column
volume - spaced occupied measured in cubic units
density - mass of an object per unit volume