Answer:
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Explanation:
Ionic compounds are compound formed from the transfer of electron(s). One atom of the element loses electron(s) while the other atom gains electron(s).
The compound Magnesium chloride is an ionic compound . The bond between an atom of magnesium and 2 atoms of chlorine is an ionic bonding.
The valency electron of magnesium is 2 electron , for the atom of magnesium to attain octet rule, it will easily lose it 2 electrons to the chlorine atoms.
The chlorine atom on the other hand has 7 valency electrons, to attain octet configuration it will most likely gain 1 electron to become stable.
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
The responding variable refers to the variable that changes as the independent variable is being manipulated. In this case, the responding variable is the number of paper clips attracted by the magnet.
An experiment must include a dependent (responding) variable and an independent variable. As the independent variable is manipulated during the experiment, the dependent (responding) variable changes accordingly.
In this case; the independent variable is temperature while the dependent (responding) variable is the number of paper clips attracted by the magnet.
Learn more: brainly.com/question/967776
I wrote the answer on this paper and here is the calculations step by step
very sry the "V" must be replaced with 285 and the 285 must be replaced with "V" and the answer is 231.09 cm3. sorry for the inconvenience.
Answer:
The empirical formula is PCl3
Explanation:
Mass of P is 30.97 g, thus 1.523 g of P equivalent to 0.05 moles of P
Mass of Cl is 35.45 g, thus 5.228 g of Cl equivalent to 0.15 moles of Cl
Therefore moles of P : moles of Cl = 0.05:0.15 = 1:3
Therefore the empirical formula, PCl3