Answer:
Robert Boyle
Explanation:
Robert Boyle (1627–1691) is regarded as the individual who established that the amount of gas decreased with the increasing stress, and vice versa, the popular Rule of Boyle. A prominent researcher and philosopher during his day, he was indeed a great supporter of experimental methods.
The final gas pressure : 175.53 atm
<h3>Further explanation</h3>
Maybe the complete question is like this :
A ridged steel tank filled with 62.7 l of nitrogen gas at 85.0 atm and 19 °C is heated to 330 °C while the volume remains constant. what is the final gas pressure?
The volume remains constant⇒Gay Lussac's Law
<em>When the volume is not changed, the gas pressure in the tube is proportional to its absolute temperature </em>

P₁=85 atm
T₁=19+273=292 K
T₂=330+273=603 K

The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.
I’m pretty sure it’s abode and cathode