<span>Evaporation involves a liquid becoming a gas and sublimation is the change of a solid directly to a gas.Phase changes require either the addition of heat energy (melting, evaporation, and sublimation) or subtraction of heat energy (condensation and freezing.</span>
Answer:
The answer is the option a.
Explanation:
We know that magnetic force (Fm) is defined as
Fm = q (v x B)
Where q is a the value of the charge, v is the velocity of the charge and B is the value of the magnetic field.
"v x B" is defined as the cross product between the vectors velocity and magnetic field, and if the angle between them is thetha < 180°, then, the cross product is
v x B = vBsin (thetha)
So,
Fm = qvBsin (thetha)
And, in case in which v and B are parallel vectors, thetha is zero, and,
sin (thetha)=sin (0) = 0
So, Fm=0
Answer:
markers are 29.76 m far apart in the laboratory
Explanation:
Given the data in the question;
speed of particle = 0.624c
lifetime = 159 ns = 1.59 × 10⁻⁷ s
we know that; c is speed of light which is equal to 3 × 10⁸ m/s
we know that
distance = vt
or s = ut
so we substitute
distance = 0.624c × 1.59 × 10⁻⁷ s
distance = 0.624(3 × 10⁸ m/s) × 1.59 × 10⁻⁷ s
distance = 1.872 × 10⁸ m/s × 1.59 × 10⁻⁷ s
distance = 29.76 m
Therefore, markers are 29.76 m far apart in the laboratory
Answer:
Yes
Explanation:
The momentum of an object is given by:

where
m is the mass of the object
v is the velocity of the object
We know that an elephant has a mass much larger than the mass of an ant. However, we see that the momentum of the animal also depends on its velocity.
If the elephant is at rest, its velocity is zero:
v = 0
so its momentum is also zero:
p = 0
And therefore, an ant which is moving (so, non-zero speed) can have more momentum than an elephant, if the elephant is at rest.