As these are distances created by moving in a straight line, using a trigonometric analysis can solve the missing single straight-line displacement. Looking at the 48m and 12m movements as legs of a triangle, obtaining the hypotenuse using the pythagorean theorem will yield us the correct answer.
This is shown below:
c^2 = 48^2 + 12^2
c = sqrt(2304 + 144)
c = sqrt(2448)
c = 49.48 m
To obtain the angle at which Anthony walks 49.48, we obtain the arc tangent of (12/48). This is shown below:
arc tan (12/48) =14.04 degrees.
Therefore, Anthony could have walked 49.48 m towards the S 14.04 W direction.
Becasue when you rubbed your hair while you were putting on your sweater it caused it to rub against together causing electricity thingy lol. and thats why your hair goes straigh tup.
Answer:
0.02 s
160 m/s
Explanation:
Given:
Δx = 1.6 m
v₀ = 0 m/s
a = 8000 m/s²
A) Find t.
Δx = v₀ t + ½ at²
1.6 m = (0 m/s) t + ½ (8000 m/s²) t²
t = 0.02 s
B) Find v.
v² = v₀² + 2aΔx
v² = (0 m/s)² + 2 (8000 m/s²) (1.6 m)
v = 160 m/s
Answer:
x = 9.32 cm
Explanation:
For this exercise we have an applied torque and the bar is in equilibrium, which is why we use the endowment equilibrium equation
Suppose the counterclockwise turn is positive, let's set our reference frame at the left end of the bar
- W l / 2 - W_{child} x + N₂ l = 0
x =
1)
now let's use the expression for translational equilibrium
N₁ - W - W_(child) + N₂ = 0
indicate that N₂ = 4 N₁
we substitute
N₁ - W - W_child + 4 N₁ = 0
5 N₁ -W - W_{child} = 0
N₁ = ( W + W_{child}) / 5
we calculate
N₁ = (450 + 250) / 5
N₁ = 140 N
we calculate with equation 1
x = -250 1.50 + 4 140 3) / 140
x = 9.32 cm