Yes, size, density, etc. will change the heating rate :)
Answer:
none of the above
Explanation:
because all of them are unstable
Answer:
3CaBr2 + 2LI3PO4 - > Ca3(PO4) 2 + 6LiBr
Explanation:
The first one I did was PO4. There are two on the right side, so I added 2 to Li3PO4 on the other side. That balanced the PO4s and then gave me 6 Lithiums so I balanced that one next on the right side. I added 6 to LiBr which balanced the Li but then gave me 6 Br, so I finished it off by adding 3 in front of CaBr2 which balanced the calcium and bromines.
Here was the process:
CaBr2+2Li3PO4 -> Ca3(PO4)2+LiBr
Balances PO4 (2on both sides)
CaBr2+2Li3PO4 -> Ca3(PO4)2+6LiBr
Balances Lithiums (6 on each side)
3CaBr2+2Li3PO4 -> Ca3(PO4)2+6LiBr
Balances Calciums and Bromines (3 Calciums and 6 Bromines each side)
Hope this helped!
You can use the formula M1 x V1 = M2 x V2 where M1 is the molarity of the first substance and V1 is the volume of the substance. M2 is the molarity of the 2nd substance and V2 is the volume of the substance
if substance 1 is HCl and 2 is KOH we can set up the following equation
x moles / liter (unknown) x .02 liters = .5 moles/ liter x .032 liters
x moles / liter x .02 liters = .016 moles
x moles / liter = .016/.02 liters
x moles / liter = .8 moles/ liter
You have . 8M HCL
There are three ways that scientists have proved that these sub-atomic particles exist. They are direct observation, indirect observation or inferred presence and predictions from theory or conjecture. Scientists in the 1800's were able to infer a lot about the sub-atomic world from chemistry.