Answer: The correct sequence for the series of event would be.
1. Igor's toe is being cut by the glass.
2. The wound surrounding the injury becomes infected with bacteria from Igor's foot.
3. Antibodies and circulating white blood cells stick to the bacteria creating a large complex in the lymph vessel.
4. The bacteria enter his lymph system and travel towards a lymph node.
5. The complex becomes trapped in a lymph node and is engulfed by a phagocyte.
6. The bacteria is destroyed.
Explanation:
Whenever there is any cut or wound in the body and body encounters invasion of the foreign materials it considers it as harmful pathogen.
These pathogens when enters the body it is considered as antigen, it then travels to the lymphatic system.
These bacterial complex is then killed by the phagocytes and digested by the body.
In this way the complex is killed and the bacteria is destroyed.
The balanced thermochemical equation is
KBr ------- K + 1/2 Br2
<h3>What is thermochemical equation? </h3>
A Thermochemical Equation is defined as the balanced stoichiometric chemical equation which includes the enthalpy change, ΔH.
The chemical equation for the decomposition of potassium bromide to its constituent elements bromine ans potassium :
KBr ----- K + Br2
The balanced thermochemical equation of the decomposition of potassium bromide to its constituent elements potassium and bromide as follows
KBr ------- K + 1/2 Br2
As the heat is absorbed in this reaction therefore, heat is positive.
Thus, we concluded that the balanced thermochemical equation is
KBr ------- K + 1/2 Br2
learn more about thermochemical equation:
brainly.com/question/2733624
#SPJ4
Answer:
The for the reaction will be 4.69.
Explanation:
The given equation is A(B) = 2B(g)
to evaluate equilibrium constant for
= 0.045
The reverse will be
Then,
=
=
The equilibrium constant for will be
= 4.69
Therefore, for the reaction will be 4.69.
When oxygen and hydrogen combine they form a polar covalent bond
According to the chemical equation, the reaction ratio between O2 and CO2 is 2:1, which mean for every 2 moles of O2 reacted there is 1 mole of CO2 formed.
Use the molar mass and mass of O2 to find out the moles of O2: moles of O2 = mass of O2/molar mass of O2 = 8.94g/32.00g/mol = 0.2794 mole. Therefore, the moles of CO2 that formed is 0.2794moles/2 = 0.1397 mole
Use the moles and molar mass CO2 to find out the mass of CO2:
Mass of CO2 = moles of CO2 * molar mass of CO2 = 0.1397 mole * .44.01g/mole = 6.15 g.
So the answer is B 6.15g.