The answer is <span>D.when the aim is to show electron distributions in shells. This is because there are some instances when elements don't possess a regular or normal electron configuration. There are those who have special electron configurations wherein a lower subshell isn't completely filled before occupying a higher subshell. It is best to visualize such cases using the orbital notation.</span>
Answer:
I'm pretty sure its the one that says very little at the beginning but if I get it wrong I'm sorry
Neon I think. Go to the periodic table and see which one is the 11th
B) A chemical change because the nail reacts with water/oxygen to create rust (a type of oxide)
Answer: It's equal to 10^(-2.3), or 0.00501 M, or 5.01 * 10^-3 moles/Liter
Explanation:
Well, pH = - log[H+]
Or, in words, pH is equal to -1 multiplied by the logarithm (base 10) of the hydrogen ion concentration.
So you have 2.3 = -log[H+]. We want to isolate the H+, so let's start simplifying the right hand side of the equation. First, we multiply both sides by -1.
-2.3=log[H+]
Now, the definition of a logarithm says that if the log (base 10) of [H+] is -2.3, then 10 raised to the -2.3 power is [H+]
So on each side of the equation, we raise 10 to the power of that side of the equation.
10^(-2.3) = 10^(log[H+])
and because 10^log cancels out...
10^(-2.3) = [H+]
Now we've solved for [H+], the hydrogen ion concentration!