1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saul85 [17]
2 years ago
15

Động cơ của một ô tô thực hiện một lực kéo không đổi là F=4000N . Biết ô tô chuyển động đều với vận tốc 36km/h . Trong năm phutd

công của lực kéo của động cơ là bao nhiêu
Physics
1 answer:
erik [133]2 years ago
3 0

Answer:

The work done is 12 MJ.

Explanation:

The engine of a car exerts a constant traction force of F=4000N . Assume that the car is moving at a constant speed of 36 km/hr. In five minutes, what is the work done by the engine's traction?

Force, F = 4000 N

speed, v = 36 km/h = 10 m/s

time , t = 5 minutes = 5 x 60 = 300  s

Work done is given by

W =  force x distance

W = 4000 x 10 x 300 J = 12 x 10^6 J = 12 MJ

You might be interested in
How is it technically correct to say that a car making a u-turn can have a constant speed but cannot have a constant velocity?
saw5 [17]

During the "U" part of the turn, the car would follow an approximately circular path, and if it's moving at a constant speed, it would have to accelerate toward the center of the circle in order to change its direction.

5 0
2 years ago
A point on the string of a violin moves up and down in simple harmonic motion with an amplitude of 1.24 mm and frequency of 875
mario62 [17]

Using

V = Amplitude x angular frequency(omega)

But omega= 2πf

= 2πx875

=5498.5rad/s

So v= 1.25mm x 5498.5

= 6.82m/s

B. .Acceleration is omega² x radius= 104ms²

5 0
3 years ago
Read 2 more answers
An object with total mass mtotal = 14.6 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.9 k
zheka24 [161]

Answer: 1) 0. 2) 4.2 Kg. 3) 15.4 m/s 4) 12.9 m/s 5) 0. 6) 3.62 KJ.

Explanation:

1) Assuming that no external forces act during the collision, total momentum must be conserved. As initially the total mass was at rest, so initial momentum is zero, final momentum of all the system must be 0 also.

2) After the explosion, as mass must be conserved also, the sum of the masses of the three pieces must be equal to the original total mass, so we can write the following:

m₁ + m₂ + m₃ = M = 14.6 Kg = 4.9 Kg + 5.5 Kg + m₃

Solving for m₃, we have:

m₃ = 14.6 Kg - 4.9 Kg -5.5 Kg = 4.2 Kg.

3) and 4)

As momentum is a vector, if it is magnitude must be 0, this means that all his components must be 0 too.

So, we can write two equations, one for the x-component, and other for the y-component, as follows:

pₓ = m₁. v₁ₓ + m₂.v₂ₓ + m₃.v₃ₓ = 0

py = m₁.v₁y + m₂. v₂y + m₃. v₃y =0

Replacing by the values, and solving for v₃ₓ and v₃y, we get:

v₃ₓ = 15.4 m/s

v₃y = 12.9 m/s

v = √(15.4)²+(12.9)² = 20.1 m/s

5) As the center of mass must move as if all the mass were concentrated in this point, and we know that the total momentum must be 0, this tells us that the magnitude of the velocity of the center of mass must be 0 too.

6) As initial kinetic energy is 0, as  the mass was at rest, the increase in the kinetic energy is obtained simply adding the kinetic energy of every piece of mass gained after explosion, as follows:

K = K₁ + K₂ + K₃ = 1/2 (m₁ . v₁² + m₂.v₂² + m₃.v₃²)

Replacing by the values, we get:

K= 3.62 KJ

4 0
2 years ago
-poopp poopoop jujuj
san4es73 [151]

Answer:

okay.........

Explanation:

3 0
3 years ago
Read 2 more answers
An element has the following natural abundances and isotopic masses: 90.92% abundance with 19.99 amu, 0.26% abundance with 20.99
sashaice [31]

<u>Answer:</u> The average atomic mass of the given element is 20.169 amu.

<u>Explanation:</u>

Average atomic mass of an element is defined as the sum of masses of the isotopes each multiplied by their natural fractional abundance.

Formula used to calculate average atomic mass follows:

\text{Average atomic mass }=\sum_{i=1}^n\text{(Atomic mass of an isotopes)}_i\times \text{(Fractional abundance})_i     .....(1)

We are given:

  • For isotope 1:

Mass of isotope 1 = 19.99 amu

Percentage abundance of isotope 1 = 90.92 %

Fractional abundance of isotope 1 = 0.9092

  • For isotope 2:

Mass of isotope 2 = 20.99 amu

Percentage abundance of isotope 2 = 0.26%

Fractional abundance of isotope 2 = 0.0026

  • For isotope 3:

Mass of isotope 3 = 21.99 amu

Percentage abundance of isotope 3 = 8.82%

Fractional abundance of isotope 3 = 0.0882  

Putting values in equation 1, we get:

\text{Average atomic mass}=[(19.99\times 0.9092)+(20.99\times 0.0026)+(21.99\times 0.0882)]

\text{Average atomic mass}=20.169amu

Hence, the average atomic mass of the given element is 20.169 amu.

4 0
3 years ago
Other questions:
  • A hot air balloon is flying above Grovenburg. To the left side of the balloon, the balloonist measure the angle of depression to
    8·1 answer
  • Which of the following is most likely to be an observation made by a physiologist
    11·1 answer
  • Where is the epicenter of the earthquake located?
    11·1 answer
  • What is the part of the steam engine that does the work? A. The flywheel B. The cylinder C. The piston D. The turbine
    8·2 answers
  • When astronauts travel to the moon, their bodies experience a lower gravitational pull than on Earth. Which type of pull are the
    5·2 answers
  • Two circular plates, each with a radius of 8.22 cm,8.22 cm, have equal and opposite charges of magnitude 3.952 μC.3.952 μC. Calc
    14·1 answer
  • Two positive charged particles will ?
    5·2 answers
  • A feeding buffer protects ______ path from delays in ______ ____.
    11·1 answer
  • Light incident on a Surface at an angle of 45° undergoes diffused reflection. At what angle will it reflect?
    10·2 answers
  • A current of 4.00 mA flows through a copper wire. The wire has an initial diameter of 4.00 mm which gradually tapers to a diamet
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!