The best answer would be the 4th choice. "They help scientists explain concepts that are difficult to observe, this also covers the first answer which helps the scientist to answer complex questions. A scientific model is not used prove scientific laws as they may not always have all the data to prove so, instead it is used to allow them to explain better concepts revolving around science through research and may also allow them to predict results based on the accumulation of data and analyzing the trend of this resulting information.
The heat energy transferred by the iron nail is 4680 J
Explanation:
The thermal energy transferred by a substance to another substance is given by the equation

where
m is the mass of the substance
C is its specific heat capacity
is its change in temperature
For the iron nail in this problem, we have:
m = 16 g


So, the amount of heat energy given off by the nail is

where the negative sign indicates that the heat is given off.
Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:
Since the distance between the pivot and its weight is zero, the moment of its weight about the pivot (= weight × 0) is zero. Hence, the weight of the ruler can be ignored.
Hope this helps:)
Answer:
The solution to the question above is explained below:
Explanation:
For which solid is the lumped system analysis more likely to be applicable?
<u>Answer</u>
The lumped system analysis is more likely to be applicable for the body cooled naturally.
<em>Question :Why?</em>
<u>Answer</u>
Biot number is proportional to the convection heat transfer coefficient, and it is proportional to the air velocity. When Biot no is less than 0.1 in the case of natural convection, then lumped analysis can be applied.
<u>Further explanations:</u>
Heat is a form of energy.
Heat transfer describes the flow of heat across the boundary of a system due to temperature differences and the subsequent temperature distribution and changes. There are three different ways the heat can transfer: conduction, convection, or radiation.
Heat transfer analysis which utilizes this idealization is known as the lumped system analysis.
The Biot number is a criterion dimensionless quantity used in heat transfer calculations which gives a direct indication of the relative importance of conduction and convection in determining the temperature history of a body being heated or cooled by convection at its surface. In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire body temperature remains essentially uniform at all times during a heat transfer process.
Conduction is the transfer of energy in the form of heat or electricity from one atom to another within an object and conduction of heat occurs when molecules increase in temperature.
Convection is a transfer of heat by the movement of a fluid. Convection occurs within liquids and gases between areas of different temperature.