Answer:
588.2 mL
Explanation:
- FeSO₄(aq) + 2KOH(aq) → Fe(OH)₂(s) + K₂SO₄(aq)
First we <u>calculate how many Fe⁺² moles reacted</u>, using the given <em>concentration and volume of FeSO₄ solution</em> (the number of FeSO₄ moles is equal to the number of Fe⁺² moles):
- moles = molarity * volume
- 187 mL * 0.692 M = 129.404 mmol Fe⁺²
Then we convert Fe⁺² moles to KOH moles, using the stoichiometric ratios:
- 129.404 mmol Fe⁺² *
= 258.808 mmol KOH
Finally we<u> calculate the required volume of KOH solution</u>, using <em>the given concentration and the calculated moles</em>:
- volume = moles / molarity
- 258.808 mmol KOH / 0.440 M = 588.2 mL
Volume = (4/3) × π × r^3
R = 1/2 D
R = 7
V = 4/3 x π x 7^3
Exact Form:
1372 π/ 3
Decimal Form:
1436.75504024
Silicon is the element having a mass of 28.09 g
<u>Explanation</u>:
- Silicon is the element having an atomic mass of 28.09 g / mol. So 28.09 g of silicon contains 6.023
10^23 atoms. One mole of each element can produce one mole of compound.
- The Atomic weight of an element can be determined by the number of protons and neutrons present in one atom of that element. So atomic weight expressed in grams always contain the same number of atoms( 6.023
10^23).
- Avagadro number is the number of atoms of 1 mole of any gas at standard temperature and pressure. It has been determined that 6.023
10^23 atoms of an element are equal to the average atomic mass of that element.
Correct Answer: The Sun heats the Earth unevenly; this heating pattern then causes convection currents in the atmosphere.
Many homeowners treat their lawns with CaCO3(s) to reduce
the acidity of the soil. The net ionic equation for the reaction of CaCO3(s)
with a strong acid, HCl (I chose HCl because it is a strong acid) is CaCO3(s) +2
HCl(aq) → CaCl2(s) + H2O(aq) + CO2(g).