Angular acceleration is simply the ratio of the Torque
over the rotation inertia, that is:
Angular acceleration = Torque / Rotational inertia
So substituting the values:
Angular acceleration = 2.4 N m / 4.0 kg m2
<span>Angular acceleration = 0.7 rad/s^2</span>
C. The downward component of the projectile's velocity continually increases
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform motion (with constant velocity) along the horizontal direction
- A uniformly accelerated motion, with constant acceleration (equal to the acceleration of gravity) in the downward direction
Here we want to study the downward component of the projectile's velocity. Since the vertical motion is a uniformly accelerated motion, the vertical velocity is given by:
where
u = 0 is the initial vertical velocity (zero since the projectile is fired horizontally)
downward is the acceleration of gravity
t is the time
So the equation becomes
This means that
C. The downward component of the projectile's velocity continually increases
Because every second, it increases by in the downward direction.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
required distance is 233.35 m
Explanation:
Given the data in the question;
Sound intensity = 1.62 × 10⁻⁶ W/m²
distance r = 165 m
at what distance from the explosion is the sound intensity half this value?
we know that;
Sound intensity is proportional to 1/(distance)²
i.e
∝ 1/r²
Now, let r² be the distance where sound intensity is half, i.e ₂ = ₁/2
Hence,
₂/₁ = r₁²/r₂²
1/2 = (165)²/ r₂²
r₂² = 2 × (165)²
r₂² = 2 × 27225
r₂² = 54450
r₂ = √54450
r₂ = 233.35 m
Therefore, required distance is 233.35 m