Answer:
5SiO2 + 2CaC2 = 5Si + 2CaO + 4CO2
Explanation:
balancing equations is a lot of trial and error. My strategy to approaching this equation was to get the O's balanced. After trying several combonations I found that I needed 10 O's on each side of the equation for the other elements to match up. After I balanced the O's, I balanced my C's to 4 on each side. Then I balanced my Ca's to have 2 on each side. And last but not least I balanced my Si to have 5 on each side.
Hi , basically dominant alleles are always expressed in the organism , while recessive traits tend to be expressed only when the dominant allele is not present.
Lysosome is B. breaks down waste materials
Vacuole is A. temporary storage
Chloroplast is C. converts energy
The empirical formula of a compound found to have 55.7% hafnium and 44.3% chlorine is HfCl4.
<h3>How to calculate empirical formula?</h3>
The empirical formula of a compound is a notation indicating the ratios of the various elements present in a compound, without regard to the actual numbers.
The empirical formula of the given compound can be calculated as follows:
- Hafnium = 55.7% = 55.7g
- Chlorine = 44.3% = 44.3g
First, we convert mass values to moles by dividing by the molar mass of each element
- Hafnium = 55.7g ÷ 178.49g/mol = 0.312mol
- Chlorine = 44.3g ÷ 35.5g/mol = 1.25mol
Next, we divide each mole value by the smallest
- Hafnium = 0.312 ÷ 0.312 = 1
- Chlorine = 1.25 ÷ 0.312 = 4
Therefore, the empirical formula of a compound found to have 55.7% hafnium and 44.3% chlorine is HfCl4.
Learn more about empirical formula at: brainly.com/question/14044066
#SPJ1
Answer:
Amount of excess Carbon (ii) oxide left over = 23.75 g
Explanation:
Equation of the reaction: Fe₂O₃ + 3CO ----> 2Fe + 3CO₂
Molar mass of Fe₂O₃ = 160 g/mol;
Molar mass of Carbon (ii) oxide = 28 g/mol
From the equation of reaction, 1 mole of Fe₂O₃ reacts with 3 moles of carbon (ii) oxide; i.e. 160 g of iron (iii) oxide reacts with 84 g (3 * 28 g) of carbon (ii) oxide
450 g of Fe₂O₃ will react with 450 * 84/180) g of carbon (ii) oxide = 236..25 g of carbon (ii) oxide
Therefore the excess reactant is carbon (ii) oxide.
Amount of excess Carbon (ii) oxide left over = 260 - 236.25
Amount of excess Carbon (ii) oxide left over = 23.75 g