No because you don’t learn about synthetic inventions yet in your first year
Given :
The average acceleration of a tennis ball that has an initial velocity of 6.0 m/s.
and a final velocity of 7.3 m/s.
It is in contact with a tennis racket for 0.094 s
To Find :
The average acceleration of the tennis ball.
Solution :
We know, average acceleration is given by :

Therefore, average velocity is given by 13.83 m/s².
Hence, this is the required solution.
Regardless of the source's mobility, light travels at the same speed.
<h3>What makes special relativity so crucial?</h3>
In the calculating and interpretation of high-velocity phenomena, as well as on our methods of thinking, Einstein's special relativity has had a significant influence on the area of physics. Today, we have a considerably better knowledge of space and time than we did at the start of the century.
<h3>Why is special relativity thus named?</h3>
Because it exclusively uses inertial frames to apply the concept of relativity, the theory is known as "special". General relativity, which Einstein created, applies the principle broadly, that is, to any frame, and this theory takes the gravitational forces into account.
learn more about relativity here
brainly.com/question/3489672
#SPJ4
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
Answer:

Explanation:
Distance travelled = 200 metre
Time taken = 24 second
Velocity = ?
<u>Finding </u><u>the</u><u> </u><u>velocity</u><u> </u>



Hope I helped!
Best regards!