Answer:
answer is B
Explanation:
The table below shows the wavelengths for some electromagnetic waves
amount of work done is 5880 J
Given:
mass of object = 50kg
Final height = 20m
initial height = 8m
To Find:
amount of work done
Solution:
work is done when a force acts upon an object to cause a displacement. You can calculate the energy transferred, or work done, by multiplying the force by the distance moved in the direction of the force.
The work done by gravity is given by the formula,
W = mgh
W = 50 x 9.8 x ( 20-8)
= 5880 J
So the work done is 5880 J
Learn more about Work done here:
brainly.com/question/25239010
#SPJ4
Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
The stratosphere is the layer above the troposphere