1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
3 years ago
15

10

Physics
1 answer:
iogann1982 [59]3 years ago
3 0

Answer:

6 m/s

Explanation:

used omni wavelength calculater

You might be interested in
Question #14
Katena32 [7]

The decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot bind to another atom, which is why hydrogen has a single atom.

The hydrogen molecule is a form that two hydrogen atoms share their electrons decreasing the total energy of the molecule, this bond has a covalent and hydrogen bonding characteristic.

In a stellar explosion, the energy released increases the energy of the hydrogen atom, for which we have two possibilities:

  • Its electron is lost, so we are in a single proton, in the case of structures where the proton and the elector are
  • The hydrogen atom remains but the energy of the atom is very high so the kinetic energy of the electron prevents the electron from being shared by the other atom and the molecule cannot be formed.

When the atoms are thrown into space, the separation between them is so high that it does not allow electrons to be shared and molecules cannot be formed either.

In conclusion, the decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot join another atom, which is why the hydrogen has only one atom.

Learn more about the Hydrogen atom here:

brainly.com/question/22464200

6 0
3 years ago
A string with a mass density of 3 * 10^-3 kg/m is under a tension of 380 N and is fixed at both ends. One of its resonance frequ
Delvig [45]

Answer:

(a) the fundamental frequency of this string is 65 Hz

(b) the harmonics of the given frequencies are third and fourth respectively.

(c) the length of the string is 2.74 m

Explanation:

Given;

mass density of the string, μ = 3 x 10⁻³ kg/m

tension of the string, T = 380 N

resonating frequencies, 195 Hz and 260 N

For the given resonant frequencies;

195 = \frac{n}{2l} \sqrt{\frac{T}{\mu} } ---(1)\\\\260 = \frac{n+1}{2l} \sqrt{\frac{T}{\mu} } ---(2)\\\\divide \ (2) \ by (1)\\\\\frac{260}{195} = \frac{n+1 }{n} \\\\260n = 195(n+1)\\\\260 n = 195 n + 195\\\\260n - 195n = 195\\\\65n = 195\\\\n = \frac{195}{65} \\\\n = 3

(c) From any of the equations, solve for Length of the string (L);

195 = \frac{n}{2l} \sqrt{\frac{T}{\mu} } \\\\195 = \frac{3}{2l}\sqrt{\frac{380}{3\times 10^{-3}} } \\\\l = \frac{3}{2\times 195}\sqrt{\frac{380}{3\times 10^{-3}} }\\\\l = 2.74 \ m

(a) the fundamental frequency is calculated as;

f_o = \frac{1}{2l} \sqrt{\frac{T}{\mu} } \\\\f_o = \frac{1}{2\times 2.74} \sqrt{\frac{380}{3\times 10^{-3} } }\\\\f_o =  65 \ Hz

(b) harmonics of the given frequencies;

the first harmonic (n = 1) = f₀ = 65 Hz

the second harmonic (n = 2) = 2f₀ = 130 Hz

the third harmonic (n = 3) = 3f₀ = 195 Hz

the fourth harmonic (n = 4) = 4f₀ = 260 Hz

Thus, the harmonics of the given frequencies are third and fourth respectively.

7 0
3 years ago
⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️
zloy xaker [14]

Answer:

its all black I cant see the image can you re upload it

Explanation:

6 0
2 years ago
Which of the following is an exercise myth?
Margaret [11]
The answere is No pain, no gain
8 0
3 years ago
Read 2 more answers
(I) In a ballistic pendulum experiment, projectile 1 results in a maximum height h of the pendulum equal to 2.6 cm. A second pro
Kipish [7]

Answer:

The second projectile was 1.41 times faster than the first.

Explanation:

In the ballistic pendulum experiment, the speed (v) of the projectile is given by:  

v = \frac{m + M}{m} \cdot \sqrt{2gh}

<em>where m: is the mass of the projectile, M: is the mass of the pendulum, g: is the gravitational constant and h: is the maximum height of the pendulum.   </em>

To know how many times faster was the second projectile than the first, we need to take the ratio for the velocities for the projectiles 2 and 1:    

\frac{v_{2}}{v_{1}} = \frac{\frac{m_{2} + M}{m_{2}} \cdot \sqrt{2gh_{2}}}{\frac{m_{1} + M}{m_{1}} \cdot \sqrt{2gh_{1}}}           (1)

<em>where m₁ and m₂ are the masses of the projectiles 1 and 2, respectively, and h₁ and h₂ are the maximum height reached by the pendulum by the projectiles 1 and 2, respectively.  </em>

Since the projectile 1 has the same mass that the projectile 2, we can simplify equation (1):

\frac{v_{2}}{v_{1}} = \frac{\sqrt{h_{2}}}{\sqrt{h_{1}}}  

\frac{v_{2}}{v_{1}} = \frac{\sqrt{5.2 cm}}{\sqrt{2.6 cm}}

\frac{v_{2}}{v_{1}} = 1.41  

Therefore, the second projectile was 1.41 times faster than the first.  

I hope it helps you!

8 0
3 years ago
Other questions:
  • The speed of light in a diamond is 1.22 x 108 m/s. Calculate the index of refraction for a diamond.
    9·1 answer
  • HEELLP!!!!!!<br> How many paragraphs do you need for a science fair research paper?
    5·1 answer
  • A series of evenly timed pulses create a wave that can be described as a _______<br><br> wave.
    15·1 answer
  • Find the voltage drop (in volt) along a 93.4 meter long 10 gauge copper wire carrying acurrent of 72.5 A. The diameter of a 10 g
    5·1 answer
  • A fluid moves through a tube of length 1 meter and radius r=0.002±0.0002 meters under a pressure p=4⋅105±1750 pascals, at a rate
    15·1 answer
  • A car accelerates uniformly from 0 km/hr to 60 km/hr in 4.5 seconds. Which one of the following choices best represents the acce
    15·1 answer
  • Using the data provided below, calculate the corrected wavelength for a spectroscope reading of 6.32.
    8·1 answer
  • Sound wave A is moving through a medium that is decreasing temperature.
    14·2 answers
  • Calculate the velocity of an object.
    10·1 answer
  • A projectile is fired in such a way that its horizontal range is equal to three times its maximum height. What is the angle of p
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!