Answer:
by reducing the frequency of the wave by a factor of three
Explanation:
Speed = wavelength * frequency.
Wavelength = speed/frequency
The speed of an electromagnetic wave in a vacuum is constant. Meanwhile the wavelength and frequency have an inverse relationship which means for every rise in any of the parameters there will also be a corresponding fall.
Since the wavelength is tripled then the frequency will also be reduced by a factor of 3
Three of these are strong electrolytes:
- HCl (Hydrochloric acid)
- HNO3 (Nitric acid)
- NaOH (Sodium hydroxide)
Two of these are Weak electrolytes:
- HF (Hydrogen fluoride)
- HC2H3O2 (Acetic acid)
And the other two are Non-electrolytes:
- C6H12O6 (Glucose)
- C2H5OH (Ethanol)
Answer:
speed of the mass is 3.546106 m / s
Explanation:
given data
mass = 77.3 g = 77.3 ×
kg
spring constant k = 12.5 N/m
amplitude A = 38.9 cm = 38.9 ×
m
to find out
the speed of the mass
solution
we will apply here conservation energy that is
K.E + P.E = Total energy ..................1
so that Total energy = K.E max = P.E max
we know amplitude so we find out first P.E max that is
PE max = K.E + P.E
(1/2)kA² = (1/2)mv² + (1/2)kx²
kA^² = mv²+ kx²
so here v² will be
v² = k(A² - x²) / m
v = √[(k/m)×(A² - x²)] ............2
here x = (1/2)A so from from 2 equation
v = √[(k/m)×(A² - (A/2)²)]
v = √[(k/m)×(3/4×A²)]
now put all value
v = √[(12.5/ 77.3 ×
)×(3/4×(38.9 ×
)²)]
v = 3.546106 m / s
speed of the mass is 3.546106 m / s
Well i’d love to answer your question but its missing some information. firstly the earth is within the milky way galaxy so something cannot travel “from” but if you said “through” the answer would be 299,792,458 meters a second
Answer:
a) No, Two vectors with different magnitudes can never add up to zero.
b) Yes, Three or more vectors with different magnitudes can add up to zero.
Explanation:
a) No, Two vectors with different magnitudes can never add up to zero.
Given vector A and B
A = (x1,y1,z1) and B = (x2,y2,z2)
For A + B = 0
This conditions must be satisfied.
x1 + x2 = 0
y1 + y2 = 0
z1 + z2 = 0
Therefore, for those conditions to be meet the magnitude of A must be equal to that of B.
b) Yes, Three or more vectors with different magnitudes can add up to zero.
For example, three forces acting at equilibrium like supporting the weight of a person with two different ropes.
W = T1 + T2
Where;
W = Weight
T1 = tension of wire 1
T2 = tension of wire 2