Answer:
Explanation:
Given that:
the initial angular velocity 
angular acceleration
= 4.44 rad/s²
Using the formula:

Making t the subject of the formula:

where;

∴

t = 0.345 s
b)
Using the formula:

here;
= angular displacement
∴



Recall that:
2π rad = 1 revolution
Then;
0.264 rad = (x) revolution

x = 0.042 revolutions
c)
Here; force = 270 N
radius = 1.20 m
The torque = F * r

However;
From the moment of inertia;

given that;
I = 84.4 kg.m²

For re-tardation; 
Using the equation



t = 0.398s
The required time it takes= 0.398s
Answer:
R' = 4R
The resistance will become 4 times the initial value.
Explanation:
The resistance of a wire at room temperature, is given by the following formula:
R = ρL/A ----------- equation 1
where,
R = Resistance of wire
ρ = resistivity of the material
L = Length of wire
A = Cross-sectional area of wire
Now, if the length (L) is multiplied by 4, then resistance will become:
R' = ρ(4L)/A
R' = 4 (ρL/A)
using equation 1:
<u>R' = 4R</u>
<u>The resistance will become 4 times the initial value.</u>
Answer:
a ) 11.1 *10^3 m/s = 39.96 Km/h
b) T_{o2} =1.58*10^5 K
Explanation:
a)
= 11.1 km/s =11.1 *10^3 m/s = 39.96 Km/h
b)
M_O2 = 32.00 g/mol =32.0*10^{-3} kg/mol
gas constant R = 8.31 j/mol.K

So, 
multiply each side by M_{o2}, so we have

solving for temperature T_{o2}

In the question given,

T_{o2} =1.58*10^5 K
Answer:
C
Explanation:
For the explained scenario in the free body force diagram definitely the two forces 1200 N and 800 N should present as they are the acting forces
So A & D rules out.
Then you must think of B & C.
You also know that the weight of the load is always acting downwards as that force is generated by gravitational field of Earth. So 800 N should be downwards not upwards. That rules out B.
So answer is C
(Free body diagram is shown in the graph)
Answer:
B
Explanation:
quantization of energy is only seen in atoms