Answer:
<u>We are given:</u>
initial velocity (u) = 20m/s
acceleration (a) = 4 m/s²
time (t) = 8 seconds
displacement (s) = s m
<u />
<u>Solving for Displacement:</u>
From the seconds equation of motion:
s = ut + 1/2 * at²
replacing the variables
s = 20(8) + 1/2 * (4)*(8)*(8)
s = 160 + 128
s = 288 m
Answer:
Q at the center of the distribution.
Explanation:
- The Gauss's law is the law that relates to the distribution of electrical charges to the resulting electrical field. It states that a flux of electricity outside the arabatory closed surface is proportional to the electricitical harg enclosed by the surface.
Answer:
The dependent variable is academic performance
The independent variable is the presence/absence of tutorial support
The control group are students who did not get the tutorial support.
The experimental group were students that got the tutorial support
Explanation:
In every experiment, there is a dependent and independent variable as well as an experimental and a control group.
The experimental group receive the treatment while the control group do not receive the treatment. The independent variable is manipulated and its impact on the dependent variable is evaluated.
The control group are students who did not receive the tutorial support while the experimental group are students that received the tutorial support.
The dependent variable in this case is academic performance. Its outcome depends on the presence or absence of tutorial support (independent variable).
Answer:
sweeps out equal areas in equal times.
Explanation:
As we know that there is no torque due to Sun on the planets revolving about the sun
so we will have

now we have

now we also know that

so rate of change in area is given as

so we will have


since angular momentum and mass is constant here so
all planets sweeps out equal areas in equal times.