Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
Momentum is conserved in a collision. Momentum is mass*velocity, so you can find your answer by calculating initial and final momentums and setting them equal to each other.
15kg * 3.50 m/s + 9kg * 2.35 m/s = 73.65 kg m/s
73.65 = 9 * 2.8 + 15x
solve for x
x= 3.23
The final velocity is 3.23 m/s
Explanation:
The water cycle basically involves five steps:
- evaporation and transpiration ⇄
- condensation, ⇄
- precipitation, ⇄
- runoff, ⇄
- infiltration ⇄
So when a <u>thunderstorm </u>occurs it <em>helps in completing the precipitation process </em>by enabling the release of water vapor stored up in the atmosphere to fall on the ground as rain.
After this, the water <em>runoffs </em><em>to the surface of the ground, on plants, into rocks, rivers, and lakes.</em>
Next, the <em>Infiltration process</em> enables the water on the ground surface to enter the soil some of which becomes groundwater.
The cycle begins again as the<em> </em><em>evaporation and transpiration</em> <em>process </em>begins, where the groundwater as a result of heat from the sun is taken back into the atmosphere, while water in plants by means of transpiration goes back <em>into the atmosphere</em>.
It then <em>condenses </em>and falls back as precipitation again.