Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
Answer:
The costs to run the dryer for one year are $ 9.03.
Explanation:
Given that the clothes dryer in my home has a power rating of 2250 Watts, and to dry one typical load of clothes the dryer will run for approximately 45 minutes, and in Ontario, the cost of electricity is $ 0.11 / kWh, to calculate the costs to run the dryer for one year the following calculation must be performed:
1 watt = 0.001 kilowatt
2250/45 = 50 watts per minute
45 x 365 = 16,425 / 60 = 273.75 hours of consumption
50 x 60 = 300 watt = 0.3 kw / h
0.3 x 273.75 = 82.125
82.125 x 0.11 = 9.03
Therefore, the costs to run the dryer for one year are $ 9.03.
Answer:
The main difference between the bs2 and bs3 engine is to present in the catalytic converter. And in bs2 engines the catalytic converter is does not used for the formation of hc and co. In bs3 engine there is no harmful emissions in the hc and co
Answer:
(a) 3.455
(b) 21.143
(c) 16.36L/min
Explanation:
In this question, we’d be providing solution to the working process of a refrigerator given the data in the question.
Please check attachment for complete solution and step by step explanation