An alp-ha particle is equivalent to the nucleus of a helium atom. Helium Atom = Answer.
Given: wavelength of Nitrogen laser (∧) = 337.1 nm = 337.1 X 10^-9 m
We know that, Energy of photon (E) = hc/∧ = hv
where, v = frequency of photon and c = speed of light = 3 X 10^8 m/s
Thus, v = c/∧ = (3 X 10^8)/ (337.1 X 10^-9) = 8.899 X 10^14 s-1.
Answer: F<span>requency of nitrogen laser = </span>8.899 X 10^14 s-1.
Answer:
Electronegativity in group 1 decreases as we go from Lithium to Francium.
Explanation:
Electronegativity is defined as the tendency of an element to attract an electron pair towards itself.
In a group generally this tendency decreases from top to bottom as the size of the atom increases and hence the positive nucleus get far from the outer orbital.
In the same way group 1 elements i.e. from Lithium to Francium electronegativity decreases.
D: the composition of the materials that make up the planet
Aromatic side chain exhibits an electronic excited state that is closer in energy to the ground state.
- In order to respond to this query, we must decide whether a peptide bond or an aromatic side chain is demonstrating an electronic exited state that is more closely related to the ground state in terms of energy.
- When our energy is as low as possible, we are in the ground state.
- What I want to point out is that if we can choose between the two options—peptide bond or aromatic side chain—without knowing the specific reasons, we can immediately rule out two potential answers.
- Consider what we already know about energy, we have:
E = h x c/λ
- That indicates that when we have more energy, a wavelength decreases. Lower energy corresponds to higher wavelength.
- Aromatic side chains absorb between 250 and 290 nm, while peptide bonds do so between 190 and 250 nm.
- According to our breakdown, we have an electron excited state that is more closely related to the ground state in terms of energy as wavelength increases.
Thus, Aromatic side chain exhibits an electronic excited state that is closer in energy to the ground state.
To view similar questions about energy, refer to:
brainly.com/question/14483627
#SPJ4