1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1
Answer:
Chloroplasts captures and stores energy for the cell by the process of photosynthesis
Answer:
<em>Well, Your best answer will be is 2H+ + 2OH- -> 2H2O but you have to reduce it to H+ + OH- -> H2O. </em><em>Good Luck!</em>
Answer:
the 2p5 should have filled up one more so it would be 2p6 ...which assuming it's not an excited electron?