Answer:
The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg
Explanation:
Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water
Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C
To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.
Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C
Latent heat of ice = L = 334000 J/kg
Specific heat capacity of water = C = 4186 J/kg.°C
Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m
Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J
543600 m = 36627.5
m = 0.0674 kg = 67.4 g of ice.
Hey there!
We are given ,
Acceleration, a = -2m/s^2
Initial velocity , u = 15m/s
Time , t = 5 seconds
We know that ,
V=u+at
Now , final speed ,
V = 15+(-2)(5)
V = 15-10
V = 5 m/s -> final speed
Hope this helps you dear :)
Have a good day <3
<span>Answer:
If you mean the Knight in the prologue, the man traveling with his son (the Squire) and a Yeoman, he is traveling to Canterbury to give thanks for his safe return from the wars in the Baltic. We're told that he has never been known to speak unkindly to anyone, a fact that sums up his chivalrous upbringing. Evidently he feels strongly motivated to live by a code of high standards and refined behavior.</span>
Answer:
The Ionospheric Effect
Explanation:
One of the largest errors in GPS positioning is attributable to the atmosphere. The long, relatively unhindered travel of the GPS signal through the virtual vacuum of space changes as it passes through the earth’s atmosphere. Through both refraction and diffraction, the atmosphere alters the apparent speed and, to a lesser extent, the direction of the signal. This causes an apparent delay in the signal's transit from the satellite to the receiver.
Answer:
4,200 joules per kilogram per degree Celsius
Explanation:
The specific heat capacity of a material is the energy required to raise one kilogram (kg) of the material by one degree Celsius (°C). The specific heat capacity of water is 4,200 joules per kilogram per degree Celsius (J/kg°C). This means that it takes 4,200 J to raise the temperature of 1 kg of water by 1°C.