1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
11

Hormones taken as medicine can harm fish when the hormones end up in waterways. What does this show about the impact of chemical

s on the environment?
A. The benefits people get from the medicines are more important than the harm to the fish.
B. Chemicals that are added to water always have harmful effects.
C. Chemicals that help people may harm the environment.
D. People should not take medicine that could pollute the environment.
Chemistry
1 answer:
iragen [17]3 years ago
3 0
The answer to this is C. 
You might be interested in
7. There are 7. 0 ml of 0.175 M H2C2O4 , 1 ml of water , 4 ml of 3.5M KMnO4 what is the molar concentration ofH2C2O4 ?
Illusion [34]

Answer:

7. 0.1021 M

8. 1.167 M

10. Increase in volume of water would lower the rate of reaction

Explanation:

7. What is the molar concentration of H₂C₂O₄ ?

Since we have 7.0 ml of 0.175 M H₂C₂O₄, the number of moles of H₂C₂O₄ present n = molarity of H₂C₂O₄ × volume of H₂C₂O₄ = 0.175 mol/L × 7.0 ml = 0.175 mol/L × 7 × 10⁻³ L = 1.225 × 10⁻³ mol.

Also, the total volume present V = volume of H2C2O4 + volume of water + volume of KMnO4 = 7.0 ml + 1 ml + 4 ml = 12 ml = 12 × 10⁻³ L

So, the molar concentration of H₂C₂O₄, M = number of moles of H₂C₂O₄/volume = n/V

= 1.225 × 10⁻³ mol/12 × 10⁻³ L

= 0.1021 mol/L

= 0.1021 M

8. Using the data from question 7 what is the molar concentration of KMnO₄ ?

Since we have 4.0 ml of 3.5 M KMnO₄, the number of moles of KMnO4 present n' = molarity of KMnO₄ × volume of KMnO₄ = 3.5 mol/L × 4.0 ml = 3.5 mol/L × 4 × 10⁻³ L = 14 × 10⁻³ mol.

Also, the total volume present V = volume of KMnO₄ + volume of water + volume of KMnO₄ = 7.0 ml + 1 ml + 4 ml = 12 ml = 12 × 10⁻³ L

So, the molar concentration of KMnO₄, M' = number of moles of KMnO₄/volume = n'/V

= 14 × 10⁻³ mol/12 × 10⁻³ L

= 1.167 mol/L

= 1.167 M

10. From question number 7, what effect increasing the volume of water has on the reaction rate?

Increase in volume of water would lower the rate of reaction because, the particles of both substances would have to travel farther distances to collide with each other, since there are less particles present in the solution and thus, the concentration of the particles would decrease thereby decreasing the rate of reaction.

3 0
3 years ago
Is this an oxidation reaction? Why or why not?
murzikaleks [220]
The oxidation state of Hydrogen in reactant side is 0 and that in product side is +1. Hence the reaction is oxidation.
7 0
3 years ago
Physical properties can be used to describe matter. Some properties are dependent on the amount of matter present. All BUT ONE o
Masteriza [31]
A. the density stays the same unless given an external catalyst
5 0
3 years ago
Read 2 more answers
Calculate the energy that is required to change 50.0 g ice at -30.0°C to a liquid at 73.0°C. The heat of fusion = 333 J/g, the h
OverLord2011 [107]

Answer:

There is 3.5*10^4 J of energy needed.

Explanation:

<u>Step 1:</u> Data given

Mass of ice at -30.0 °C = 50.0 grams

Final temperature = 73.0 °C

The heat of fusion = 333 J/g

the heat of vaporization = 2256 J/g

the specific heat capacity of ice = 2.06 J/gK

the specific heat capacity of liquid water = 4.184 J/gK

<u>Step 2:</u> Calculate the heat absorbed by ice

q = m*c*(T2-T1)

⇒ m = the mass of ice = 50.0 grams

⇒ c = the heat capacity of ice = 2.06 J/gK = 2.06 J/g°C

⇒ T2 = the fina ltemperature of ice = 0°C

⇒ T1 = the initial temperature of ice = -30.0°C

q = 50.0 * 2.06 J/g°C * 30 °C

q = 3090 J

<u>Step 3:</u> Calculate heat required to melt the ice at 0°C:

q = m*(heat of fusion)

q = 50.0* 333J/g

q =  16650 J

<u> </u>

<u>Step 4</u>: Calculate the heat required to raise the temperature of water from 0°C to 73.0°C

q = m*c*(T2-T1)

 ⇒ mass = 50.0 grams

⇒ c = the specific heat of water = 4.184 J/g°C

⇒ ΔT = T2-T1 = 73.0 - 0  = 73 °C

q = 50.0 * 4.184 * 73.0 = 15271.6 J

<u>Step 5:</u> Calculate the total energy

qtotal = 3090 + 16650 + 15271.6 = 35011.6 J = 3.5 * 10^4 J

There is 3.5*10^4 J of energy needed.

8 0
3 years ago
Explain why either liquids nor gases have permanent shapes
Kruka [31]
Because they can't get trapped in.
5 0
3 years ago
Other questions:
  • Judging by the electron domain geometry, which type of hybrid orbitals does this molecule have? s sp sp2 sp3
    5·2 answers
  • A thermos bottle (Dewar vessel) has an evacuated space between its inner and outer walls to diminish the rate of transfer of the
    15·1 answer
  • What always happens during a chemical change?
    9·1 answer
  • Creates clouds, snow, sleet, rain and hail
    13·1 answer
  • The orbital period of planet Venus is 0.62 years. What is its distance from the sun?
    14·1 answer
  • Which could cause topsoil to be lost? a) wind and water erosion b)lack of use c)compaction d)desertification
    5·2 answers
  • What creates Earth's magnetic field? Choose the best answer from the selections below. a the hot, dense ball of solid iron at th
    11·1 answer
  • Name two things in the lab that are for safety
    14·1 answer
  • A solution is
    11·1 answer
  • Cómo se forma el enlace ionico​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!