<h3>Hello there!</h3>
Here, you are looking for the amount of heat put in for water, at a mass of 187 grams, to change by 80 degrees.
The equation commonly accepted to find the answer to questions like these is the specific heat formula.
The equation is Q = mc∆T, where Q is the amount of energy put in to raise the temperature by a certain amount, m is the mass, c is the specific heat capacity, and ΔT is the amount of temperature change.
The information given:
m = 187 grams
c = specific heat capacity of water, or in this case 1 calorie, or 4.184 joules (which is what we will be using)
ΔT = 80 degrees
Now just plug everything in to solve.
Q = 187 * 4.184 * 80
Q = 62592.64
So you have your answer: 62592.64 joules.
Hope this helped!
The answer is D I’m not really sure yet
Class 1 lever
Explanation:
In a class 1 lever, the fulcrum is placed between the effort and the load. This lever systems is the most common.
- The effort is the force input and the load is the force output
- The fulcrum is a hinge between the load and effort.
- Movement of the effort and load are in opposite directions.
- There are other classes of lever like the class 2 and 3.
- They all have different load, fulcrum and effort configurations
learn more:
Load related problems brainly.com/question/9202964
Torque brainly.com/question/5352966
#learnwithBrainly
Based on the situation above the the work done was 400 Joules. <span>Q = FS cos(theta) is the so-called work function. It's important to learn the work physics; you'll see it over and over in science/physics class. Theta is the angle between the force vector F and the distance vector S. In your problem we assume theta = 0, the two vectors were assumed aligned.</span>

Each increase in the prefix is a division by 1000.