I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J.
At point A, all this energy has converted into kinetic energy, which is:

And since K=7.35 J, we can find the velocity, v:
Answer:
Vy = V0 sin 38 where Vy is the initial vertical velocity
The ball will accelerate downwards (until it lands)
Note the signs involved if Vy is positive then g must be negative
The acceleration is constant until the ball lands
t (upwards) = (0 - Vy) / -g = Vy / g final velocity = 0
t(downwards = (-Vy - 0) / -g = Vy / g final velocity = -Vy
time upwards = time downwards (conservation laws)
<h2>Answer: Francium
</h2>
Let's start by explaining that electronegativity is a term coined by Linus Pauling and is determined by the <em>ability of an atom of a certain element to attract electrons when chemically combined with another atom.
</em>
So, the more electronegative an element is, the more electrons it will attract.
It should be noted that this value can not be measured directly by experiments, but it can be determined indirectly by means of calculations from other atomic or molecular properties of the element. That is why the scale created by Pauling is an arbitrary scale, where the maximum value of electronegativity is 4, assigned to Fluorine (F) and the <u>lowest is 0.7, assigned to Francium (Fr).</u>
AS
work done =W = F.d = F d cosФ (Ф is angle between force F and displacement d) If a body/object is moving on a smooth surface (friction-less surface ) .There is no force acting on that body. F=0 so W=FdcosФ= (0)dcosФ ⇒ W=0
Now if a body is facing some amount of force but under the action of force there is no displacement covered. d=0 so W =FdcosФ= F(0)cosФ ⇒W=0
example: A person is applying a force on rigid wall but wall remains at rest there is no displacement occurs in wall.
The third term upon which work done dependent is angle between force and displacement i.e Ф. If Ф=90° then W= FdcosФ= Fdcos90⇒ W=0 ( as cos 90°=0)