Answer:
c. 
Explanation:
= Initial distance between asteroid and rock = 7514 km = 7514000 m
= Final distance between asteroid and rock = 2823 km = 2823000 m
= Initial speed of rock = 136 ms⁻¹
= Final speed of rock = 392 ms⁻¹
= mass of the rock
= mass of the asteroid
Using conservation of energy
Initial Kinetic energy of rock + Initial gravitational potential energy = Final Kinetic energy of rock + Final gravitational potential energy

Correct Answers is A.
The machines gives us some mechanical advantage. This means the mechanical average makes the work output greater than the work input
Simple most example is a lever. The force applied is smaller and the output work is larger as compared to input.
Option B cannot be true, as there must be a force to get some work done.
Option C and D are inverse of what a machine is designed for. A small force can be exerted through a large distance to have a large force exerted through a small distance. Common Example of this principle is a screw opener.
Answer:
24.084 m/s
Explanation:
From the law of conservation of linear momentum
Total momentum before collision equals to the total momentum after collision
Since momentum=mv where m is mass and v is velocity
where
is the mass of the truck,
is velocity of the truck,
is the common velocity of moving and standing truck after collision and
is the mass of the standing truck
Making
the subject we obtain
Substituting
as 25000 Kg,
as 22.3 m/s,
as 2000 Kg we obtain
Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive
The truck was moving at 24.084 m/s
A liquid has a definite volume but takes the shape of whatever object it's in.
Brainliest please! Hope this Helps!