<span>34.2 grams
Lookup the atomic weights of the involved elements
Atomic weight potassium = 39.0983
Atomic weight Chlorine = 35.453
Atomic weight Oxygen = 15.999
Molar mass KClO3 = 39.0983 + 35.453 + 3 * 15.999 = 122.5483 g/mol
Moles KClO3 = 87.4 g / 122.5483 g/mol = 0.713188188 mol
The balanced equation for heating KClO3 is
2 KClO3 = 2 KCl + 3 O2
So 2 moles of KClO3 will break down into 3 moles of oxygen molecules.
0.713188188 mol / 2 * 3 = 1.069782282 mols
So we're going to get 1.069782282 moles of oxygen molecules. Since each molecule has 2 atoms, the mass will be
1.069782282 * 2 * 15.999 = 34.23089345 grams
Rounding the results to 3 significant figures gives 34.2 grams</span>
<h3>
Answer:</h3>
Gas law : Boyle's law
New pressure: 66.24 atm
<h3>
Explanation:</h3>
Concept tested: Gas laws (Boyle's law)
<u>We are given,</u>
- Initial pressure, P₁ = 2.86 atm
- Initial volume, V₁ = 8472 mL
- New volume, V₂ IS 365.8 mL
We need to determine the new pressure, P₂
- According to Boyle's law , the volume of a fixed mass of a gas and the pressure are inversely proportional at constant temperature.
- That is,
- This means , PV = k (constant)
- Therefore; P₁V₁ = P₂V₂
- Rearranging the formula, we can get the new pressure, P₂
P₂ = P₁V₁ ÷ V₂
= (2.86 atm × 8472 mL) ÷ 365.8 mL
= 66.24 atm
Therefore, the new pressure is 66.24 atm