Answer:
Magnetic field will be ZERO at the given position
Explanation:
As we know that the magnetic field due to moving charge is given as

so here we know that for the direction of magnetic field we will use

so we have

so magnetic field must be ZERO
So whenever charge is moving along the same direction where the position vector is given then magnetic field will be zero
At the "very top" of the ball's path, there's a tiny instant when the ball
is changing from "going up" to "going down". At that exact tiny instant,
its vertical speed is zero.
You can't go from "rising" to "falling" without passing through "zero vertical
speed", at least for an instant. It makes sense, and it feels right, but that's
not good enough in real Math. There's a big, serious, important formal law
in Calculus that says it. I think Newton may have been the one to prove it,
and it's named for him.
By the way ... it doesn't matter what the football's launch angle was,
or how hard it was kicked, or what its speed was off the punter's toe,
or how high it went, or what color it is, or who it belongs to, or even
whether it's full to the correct regulation air pressure. Its vertical speed
is still zero at the very top of its path, as it's turning around and starting
to fall.
Answer:
A compass can detect a magnetic field and show its direction. Iron filings can show the shape of a magnetic field. A gaussmeter can detect a field and indicate its strength.
Explanation:
Answer:
No, you can't keep on dividing the charge forever.
Explanation:
No, you can't keep on dividing the charge in that manner forever because the total charge of the stick is an integer multiples of individual units known as an elementary charge, <em>which is the electron (e) charge (e = 1.602x10⁻¹⁹C)</em>.
Therefore the limit of the division of the original charge will be the electron charge since it is the smallest charge that can exist freely.
I hope it helps you!
Answer:
The answer is temperature lol
Explanation:
:)