Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
AWhich of the following would most likely cause a decrease in the quantity supplied? A decrease in price.
If the atom is neutral, it has the same number of protons as electrons. If there are 5 electrons, there are also 5 protons.
Answer: A red supergiant
Explanation:
Red supergiants are the stars that have a supergiant luminosity which has a class of either K or M spectral type. In terms of volume, they are regarded as the largest stars on Earth even though they are not the most luminous.
Red supergiants are formed when a star collapses after the hydrogen fuel that the star has in its core runs out and
then fusion begins when the outer shells of hydrogen gets hot.
Answer:
The ball will reach the ground in 0.8s
Option C
Explanation:
Given:
- Takes t = 0.8 s for ball to reach ground when thrown horizontal from top of a building.
Find:
If it had been thrown with twice the speed in the same direction, it would have hit the ground in how many second.
Solution:
- We know that the amount of time taken to hit the ground is determined by the vertical distance i.e height at which it is thrown. The displacement of ball from top is given by:
S_y = S_o + V_i,y*t + 0.5*g*t^2
- We know that the S_o = height of the building.
We also know that the ball os thrown horizontally; hence, y-component of initial velocity is zero. V_y,i = 0
0 = h + 0 + 0.5*g*t^2
- Hence, the time taken t is:
t = sqrt ( 2h / g)
- The time taken to reach the ground is independent of the initial speed. Hence, the ball will reach the ground in 0.8s .