1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
13

. You have two carts, one which is empty and has mass m. The second cart is of the same mass but loaded with twice the mass of t

he empty cart i.e. it has mass 3m. You push each of them (one at a time) with the same constant force, over the same distance, starting from rest. After you have pushed them through this distance, you remove the force. How will the kinetic energy of the loaded and empty carts compare to each other
Physics
1 answer:
frez [133]3 years ago
5 0

Answer:

Their kinetic energies would be the same

Explanation:

This is because, since the force, F acting on them moves the same distance, d, the work done by the force is W = Fd.

Now, from work-kinetic energy principles,

W = ΔK where ΔK = change in kinetic energy of the carts.

Since the work-done is the same for both carts, their change in kinetic energies would also be the same.

Since they start from rest, ΔK = K' - K =  K' - 0 = K'

So, the kinetic energies of the carts would be the same

You might be interested in
Consider a river flowing toward a lake at an average speed of 3 m/s at a rate of 550 m3/s at a location 58 m above the lake surf
Vladimir [108]

Answer:

1. 0.574 kJ/kg

2. 315.7 MW

Explanation:

1. The mechanical energy per unit mass of the river is given by:

E_{m} = E_{k} + E_{p}

E_{m} = \frac{1}{2}v^{2} + gh

Where:

Ek is the kinetic energy

Ep is the potential energy

v is the speed of the river = 3 m/s

g is the gravity = 9.81 m/s²

h is the height = 58 m

E_{m} = \frac{1}{2}(3 m/s)^{2} + 9.81 m/s^{2}*58 m = 0.574 kJ/Kg

Hence, the total mechanical energy of the river is 0.574 kJ/kg.

2. The power generation potential on the river is:

P = m(t)E_{m} = \rho*V(t)*E_{m} = 1000 kg/m^{3}*550 m^{3}/s*0.574 kJ/kg = 315.7 MW

Therefore, the power generation potential of the entire river is 315.7 MW.

I hope it helps you!

4 0
2 years ago
Yashoda prepares some lime juice on a hot day. She adds 80 g of ice at a temperature of 0°C to 0.32 kg of lime juice. The temper
Vikentia [17]

Answer:

Explanation:

a )

hear energy required to melt 1 g of ice = 340 J ,

hear energy required to melt 80 g of ice = 340 x 80  J = 27220 J .

b ) energy gained by the melted ice ( water at O°C ) = m ct

where m is mass of water , s is specific heat and t is rise in temperature

= 80 x 4.2 x ( 8°C - 0°C)

= 2688 J .

c )

energy lost by lime juice = energy gained by ice and water

= 27220 J + 2688 J .

= 29908 J .

d )

Let specific heat required be S

Heat lost by lime juice = M S T

M is mass of lime juice , S is specific heat , T is decrease in temperature

= 320 g x S x ( 29 - 8 )°C

= 6720 S

For equilibrium

Heat lost = heat gained

6720 S = 29908 J

S = 4.45 J /g °C .

4 0
3 years ago
a) ¿En qué posición es mínima la magnitud de la fuerza sobre la masa de un sistema masa-resorte? 1) x 0, 2) x A o 3) x A. ¿Por q
Tatiana [17]

Answer:

a) the correct answer is 1 , b) x=0   F=0, a=0

x= 0.050    F= -7.5 N,  a= -15 m/s²

x= 0.150     F= 22.5 N,  a=- 45 m/s²

Explanation:

a) In a mass - spring system the force is given by the Hooke force,

          F = - k x

Analyzing this equation we see that the outside is proportional to the elongation from the equilibrium position, therefore the force is zero when the spring is in its equilibrium position

the correct answer is 1

b) we assume that the given values ​​are from the equilibrium position of the spring.

Let's calculate the force

x = 0

      F = 0

x = 0.050

      F = - 150 0.050

      F = - 7.50 N

x = 0.150

      F = - 150 0.150

      F = - 22.5 N

let's use Newton's second law to find the acceleration

      F = m a

      a = F / m

x = 0 m

      a = 0

x = 0.050 m

      a = -7.50 / 0.50

      a = - 15 m / s²

x = 0.150 m

      a = - 22.5 / 0.50

      a = - 45 m/s²

TRASLATE

a) En un sistema masa – resorte  la fuerza es dada por la fuerza de Hoke,  

          F= - k x

analizando esta ecuación vemos que la fuera es proporcional a la elongación desde la posición de equilibrio, por lo tanto la fuerza es cero cuando el resorte esta en su posición de equilibrio

la respuesta correcta es  1

b)suponemos que los valores dados son desde la posición de equilibrio del resorte.

Calculemos la fuerza  

x=0  

              F= 0

x=0.050  

              F = - 150 0.050

              F= - 7.50 N

x= 0.150  

                F= - 150 0.150

                F= - 22.5 N

usemos la segunda ley de Newton para encontrar la aceleración

          F = m a

          a = F/m

x =0  m

        a = 0

x= 0.050 m

         a = -7.50/ 0.50

          a =- 15 m/s²

x= 0.150 m

          a= - 22.5 / 0.50

          a= - 45 m/s²

7 0
3 years ago
Find a parametric representation for the surface. The plane through the origin that contains the vectors i - j and j - k
boyakko [2]

Answer:

parametric representation: x = u, y = v - u ,  z = - v

Explanation:

Given vectors :

i - j ,  j - k

represent the vector equation of the plane as:

r ( u, v ) = r₀ + <em>u</em>a + vb

where:  r₀ = position vector

            u and v = real numbers

             a and b = nonparallel vectors

expressing the nonparallel vectors as :

a = i -j , b = j - k , r = ( x,y,z ) and r₀ = ( x₀, y₀, z₀ )

hence we can express vector equation of the plane as

r(u,v) = ( x₀ + u, y₀ - u + v,  z₀ - v )

Finally the parametric representation of the surface through (0,0,0) i.e. origin = 0

( x, y , z ) = ( x₀ + u,  y₀ - u + v,   z₀ - v )

x = 0 + u ,

y = 0 - u + v

z = 0 - v

∴ parametric representation: x = u, y = v - u ,  z = - v

3 0
2 years ago
A bar magnet is held above the center of a conducting ring in the horizontal plane. The magnet is dropped so it falls lengthwise
Alenkinab [10]

Explanation:

Since, it is given that the magnet drops and falls lengthwise towards the canter of the ring. As a result, change in magnetic flux will occur which tends to induce an electric current in the ring.

Therefore, a magnetic field is also produced by the ring itself which will actually oppose or repel the magnet.  

Thus, we can conclude that the falling magnet be repelled by the ring due to the magnetic interaction of the magnet and the ring.

7 0
3 years ago
Other questions:
  • If the average distance between bumps on a road is about 10 m and the natural frequency of the suspension system in the car is a
    5·1 answer
  • Una lancha sube y baja por el paso de las olas cada 3.2 segundos, entre cresta y cresta hay una distancia de 24.5 m. ¿cual es la
    10·1 answer
  • The electrons involved in the formation of a chemical bond are called
    10·1 answer
  • What is the process called in which water vapor and carbon dioxide retain heat
    13·1 answer
  • A metal sample of mass M requires a power input P to just remain molten. When the heater is turned off, the metal solidifies in
    8·1 answer
  • When air resistance equals the weight of an object, the object has reached
    9·1 answer
  • What percent of the energy used in the united states come from burning fossil fuels?
    11·1 answer
  • 15.3 comparing planetary motion compare and contrast the different types of planetary motion
    12·2 answers
  • What is the moment of inertia of a disc of mass 5kg and radius 10cm?
    5·2 answers
  • Fernanda is working on a physics project. she is experimenting by rolling a marble down a ramp and then seeing how far it rolls
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!