Answer: 0.077 M
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time taken for decay process = 10 minutes
a = initial amount of the reactant= 0.859 M
a - x = amount left after decay process =?
Putting values in above equation, we get:


Thus the concentration of a after 10.0 minutes is 0.077 M.
<span>In order best to find out whether the obtained experimental results are worth mor etime and resources the group of scientists should present their results (could be done also in poster session) to other scientists in order to hear their opinion and get a feedback. The shoudl also ask another researchers to redo the experiments and to compare the results. </span>
Answer: Drink water, practice, do some light stretches
Explanation:
Answer:
d) 1.2 mT
Explanation:
Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.
First of all, we observe that:
- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is
I = 15 A
- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).
Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

where
is the vacuum permeability
I = 15 A is the current in the conductor
r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field
Substituting, we find:
