Answer:
Converting Grams to Moles of an Element and Vice Versa.
We can convert back and forth between grams of an element and moles.
The conversion factor for this is the molar mass of the substance. The molar mass is the ratio giving the number of grams for each one mole of the substance
molar mass is the factor
We can find the number of moles of PH₃ using ideal gas law equation
PV = nRTwhere
P - standard pressure - 101 325 Pa
V - volume - 250 x 10⁻⁶ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 273 K
substituting the values in the equation
101 325 Pa x 250 x 10⁻⁶ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 273 K
n = 0.011 mol
therefore mass of PH₃ = 0.011 mol x 34 g/mol = 0.374 g
mass of PH₃ is 0.374 g
Answer:
178.98 sq. feet
Explanation:
The path and the garden has been shown in the figure below. The green area is the garden and the area in brown is the path.
It has been given that,
Radius of garden = 8 feet
So, the area of garden = 3.14 × 8 × 8 = 200.96 sq. feet
The total radius of the land including garden and path = 8 + 3 = 11 feet
So, the total are of land including garden and path = 3.14 × 11 × 11 = 379.94 sq. feet
So, the area of path = Total area of the land - area of garden
Area of path = 379.94 - 200.96 = 178.98 sq. feet
Answer:
Energy required to remove an electron from the atom.
Explanation:
Energy required to remove an electron from an atom describe ionization energy because in chemistry, ionization energy in is the amount of energy needed to remove electrons from the atoms or ions of chemical species.
Ionization energy increases as we move across the period of elements in the group and this is because electrons are bond tighter by high effective nuclear charge and ionization energy of elements increases down the group because electrons are bond together in lower energy orbitals.