Answer:
0.09
Explanation:
Packet switching involves breaking a message into packets and sending them independently. Since the user only needs to transmit 10 percent of the time, the probability that a given (specific) user is transmitting = 10% = 0.1
The probability that a user is not transmitting = 100% - 10% = 90% = 0.9
Therefore, the probability that a given (specific) user is transmitting, and the remaining users are not transmitting = 0.1 * 0.9 = 0.09
Answer:
Technicians A is correct
Explanation:
According to ASE ( Automotive service excellence) "Certification credentials are valid for five years. If it has been five years or more since you took a test, it’s time to register for the corresponding Recertification Test. The five-year requirement ensures certified professionals are current in this rapidly changing industry."
This counters the claim of technician B who say the programs must be reviewed every three years , and ASE sends you reminders before your credentials expire.
Answer:
14,538 trains in the world.
Explanation:
There could be more in the world because they could make more or there could be less??
Answer:
The major effects of ice accretion on the aircraft is that it disturbs the flow of air and effects the aircraft's performance.
Explanation:
The ice accretion effects the longitudinal stability of an aircraft as:
1. The accumulation of ice on the tail of an aircraft results in the reduction the longitudinal stability and the elevator's efficacy.
2. When the flap is deflected at
with no power there is an increase in the longitudinal velocity.
3. When the angle of attack is higher close to the stall where separation occurs in the early stages of flow, the effect of ice accretion are of importance.
4. When the situation involves no flap at reduced power setting results in the decrease in aircraft's longitudinal stability an increase in change in coefficient of pitching moment with attack angle.
Answer:
<em>55%</em>
Explanation:
hot reservoir = 1100 K
cold reservoir = 500 K
<em>This is a Carnot system</em>
For a Carnot system, maximum efficicency of the system is given as
Eff = 1 - 
where Tc = temperature of cold reservoir = 500K
Th = temperature of hot reservoir = 1100 K
Eff = 1 - 
Eff = 1 - 0.45 = 0.55 or<em> 55%</em>