1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
3 years ago
7

Yall pls help me out

Engineering
1 answer:
atroni [7]3 years ago
8 0

Answer:

M·L/T²

Explanation:

The given equation for <em>T</em> is presented as follows;

T = \dfrac{M \cdot V^2 \cdot A}{L^3}

Where;

m = Mass with dimension M

V = Velocity, having the dimensions L/T

A = Area, having the dimensions L²

l = Length, having the dimensions, L

Therefore;

The \ dimensions \ of \ T = \dfrac{M \times (L/T)^2 \cdot L^2}{L^3} =  \dfrac{M \times L^4/T^2 }{L^3} = M \cdot L/T^2

You might be interested in
A. 50
Licemer1 [7]

Answer:

love

Explanation: you

5 0
2 years ago
Component of earthing and reasons why each material is being used<br><br>​
timofeeve [1]

Answer:

The components of earthing are Earth electrode, Main earthing terminals/bars, Earthing conductors, Protective conductors Equipontential binding conductors and Electrically independent electrodes.

3 0
2 years ago
What is the reason for the development of new construction of materials for human use? (Select all that apply.)
salantis [7]

Answer:

All 4 could be justified.

Explanation:

They all represent ultimate improvement.

7 0
3 years ago
The unit weight of a soil is 14.9kN/m3. The moisture content of the soil is17% when the degree of saturation is 60%. Determine:
Serggg [28]

Answer:

a) 2622.903 N/m^3

b) 1.38233

c)4.878811765

Explanation:

Find the void ratio using the formula:

y = \frac{G_{s}*y_{w} + w*G_{s}*y_{w} }{1+e} ....... Eq1

Here;

G_{s} is specific gravity of soil solids

y_{w} is unit weight of water = 998 kg/m^3

w is the moisture content = 0.17

e is the void ratio

y is the unit weight of soil = 14.9KN/m^3

Saturation Ratio Formula:

w*G_{s} = S*e  ..... Eq2

S is saturation rate

Substitute Eq 2 into Eq 1

y = \frac{(\frac{S*e}{w}) * y_{w} + S*e*y_{w}  }{1+e}

14900 = \frac{3522.352941*e + 598.8*e }{1+e} = \frac{4121.152941*e}{1+e}\\\\ e= 1.38233

Specific gravity of soil solids

G_{s} = \frac{S*e}{w} = \frac{0.6*1.38233}{0.17} = 4.878811765

Saturated Unit Weight

y_{s} = \frac{(G_{s} + e)*y_{w}  }{1+e} \\=\frac{(4.878811765 + 1.38233)*998  }{1+1.38233}\\\\= 2622.902571 N/m^3

7 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
Other questions:
  • A flocculation basin equipped with revolving paddles is 60 ft long (the direction of flow). 45 ft wide, and 14 ft deep and treat
    11·1 answer
  • A compression ignition engine when tested gave an indicator card having area 3250mm^2 and length 73mm. The calibration factor wa
    10·1 answer
  • ________ is the most theoretical computing discipline, focusing mostly on finding new and better ways for computers to work
    9·1 answer
  • A reciprocating engine of 750mm stroke runs at 240 rpm. If the length of the connecting rod is 1500mm find the piston speed and
    9·1 answer
  • A hot plate with a temperature of 60 C, 50 triangular profile needle wings of length (54 mm), diameter 10 mm (k = 204W / mK) wil
    6·1 answer
  • The current flow in an NMOS transistor is due to one of the following:
    11·1 answer
  • 8- Concentration polarization occurs on the surface of the.......
    15·1 answer
  • What is photosynthesis​
    9·2 answers
  • How many meters per second is 100 meters and 10 seconds
    12·1 answer
  • How could angela use the puzzle to model semiconductors? as an n-type semiconductor with the pegs representing electrons and the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!