Answer:
17.658 kPa
Explanation:
The hydrostatic pressure of a fluid is the weight of a column of that fluid divided by the base of that column.

Also, the weight of a column is its volume multiplied by it's density and the acceleration of gravity:

Meanwhile, the volume of a column is the area of the base multiplied by the height:

Replacing:

The base cancels out, so:

The pressure depends only on the height of the fluid column, the density of the fluid and the gravity.
If you have two point at different heights (or depths in the case of objects submerged in water) each point will have its own column of fluid exerting pressure on it. Since the density of the fluid and the acceleration of gravity are the same for both points (in the case of hydrostatics density is about constant for all points, it is not the case in the atmosphere), we can write:

We do not know at what depth the man of this problem is, but it doesn't matter, because we know the difference in height of the two points of interes (h1 - h2) = 1.8 m. So:

Answer:
As P is continually increased, the block will now slip, with the friction force acting on the block being: f = muK*N, where muK is the coefficient of kinetic friction, with f remaining constant thereafter as P is increased.
Answer:
It's job is to block the flow of coolant to the radiator until the engine has warmed up. Once the engine reaches its operating temperature (generally about 200 degrees F, 95 degrees C), the thermostat opens. By letting the engine warm up as quickly as possible, the thermostat reduces engine wear, deposits and emissions.
Answer:
Work done by the fluid in the piston=164.5kJ/kg
Specific gas constant= 0.263 kJ/kg K
Molecular weight of gas= 31.54 kmol
Answer: what is the formula
Explanation:
I can’t figure nothing out with out the formula