There seems to be a mistake. If u mistyped the 'h', then the reaction is single replacement.
<u>Answer:</u> The
for the reaction is -1052.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times \Delta H_1]+[1\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%5CDelta%20H_1%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1052.8 kJ.
a. 1,4332 g
b. 7.54~g
<h3>Further explanation</h3>
Given
Reaction
MgCl2 (s) + 2 AgNO3 (aq) → Mg(NO3)2 (aq) + 2 AgCl (s)
20 cm of 2.5 mol/dm^3 of MgCl2
20 cm of 2.5 g/dm^3 of MgCl2
Required
the mass of silver chloride - AgCl
Solution
a. mol MgCl2 :

From equation, mol AgCl = 2 x mol MgCl2=2 x 0.05=0.1
mass AgCl(MW=143,32 g/mol)= 0.1 x 143,32=1,4332 g
b. mol MgCl2 (MW=95.211 /mol):

From equation, mol AgCl = 2 x mol MgCl2=2 x 0.0263=0.0526
mass AgCl(MW=143,32 g/mol)= 0.0526 x 143,32=7.54~g
We are given the chemical reaction and the amount of reactant used for the process. We use these data together to obtain what is asked. We do as as follows:
0.882 mol H2O2 ( 1 mol O2 / 2 mol H2O2 ) = 0.441 mol O2 produced
Hope this answers the question.