The speed of the spaceship relative to the galaxy is 0.99999995c.
A light-year measures distance rather than time (as the name might imply). A light-year is a distance a light beam travels in one year on Earth, which is roughly 6 trillion miles (9.7 trillion kilometers). One light-year equals 5,878,625,370,000 miles. Light moves at a speed of 670,616,629 mph (1,079,252,849 km/h) in a vacuum.We multiply this speed by the number of hours in a year to calculate the distance of a light-year (8,766).
The Milky way galaxy is 100,000 light years in diameter.
The galaxy's diameter is a mere 1. 0 ly.
We know that ;

L = 1 light year
L₀ = 100,000 light year




Therefore, the speed of the spaceship relative to the galaxy is 0.99999995c.
Learn more about a light year here:
brainly.com/question/17423632
#SPJ4
Earth. Only. Any other known planets are inapplicable.
Answer:
<em>13.54 tons</em>
Explanation:
Let f be the amount of fuel oxidizer needed
v be the speed
The relationship between them is inverse in nature i.e
f ∝ 1/v
f = k/v
If a rocket for use in deep space is to have the capability of boosting a total load (payload plus the rocket frame and engine) of 3.25 metric tons to a speed of 10,000 m/s, then f = 3.25 when v = 10,000
Substitute and get k
k = fv
k = 3.25 * 10,000
k = 32500
To get the amount of fuel oxidizer required to produce a speed of 2400m/s, we will find f when v = 2400m/s
Recall that f = k/v
f = 32500/2400
f = 13.54 metric tons
<em>Hence the fuel plus oxidizer that will be required is 13.54 tons</em>
Answer:
The mass of the solid cylinder is 
Explanation:
From the question we are told that
The radius of the grinding wheel is 
The tangential force is 
The angular acceleration is 
The torque experienced by the wheel is mathematically represented as

Where I is the moment of inertia
The torque experienced by the wheel can also be mathematically represented as

substituting values


So


So

This moment of inertia can be mathematically evaluated as

substituting values

=> 