Force = mass * acceleration
F = ma
Given m = 10 kg, F = 30 N;
F = ma
30 = 10a
Solving for a:
a = 3 m/s^2
The acceleration is 3 meters per second squared.
The answer is 2.49 x 10^5 KJ. This was obtained (1) use the formula for specific heat to achieve Q or heat then (2) get the energy to melt the copper lastly (3) Subtract both work and the total energy required to completely melt the copper bar is achieved.
Answer: 6m
Explanation: 6 is more than 3 and their both being measured by m
Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081
Answer:
D
Explanation:
The bottom of the mountain is not correct because your trying to stop.
The top is of the mountain is when you gain energy.
The middle is when you have the most kinectic energy.