Answer:
The astronaut will get a velocity 0.064ms−1 opposite to the direction of the object.
Answer:

Explanation:
As we know that the displacement of the particle from the mean position is 1/5 times of its amplitude
so we have


so now we have

now we have

so the phase other particle in opposite direction is given as

so we have phase difference given as


Answer:
20 cm to the right of the center or 20+50 = 70 cm from the left side.
Explanation:
The length of meter stick is 1 m = 100 cm
Balance point on 50 cm
From the center the 20 N weight is 50-20 = 30 cm
Torque is obtained when force is multiplied with the distance
As the force is conserved we have

The distance will be 20 cm to the right of the center or 20+50 = 70 cm from the left side.
. . . . . not zero .
Note: "... unbalanced" would be a terrible answer.
Answer:
11.962337 × 10^-4 N
Explanation:
Given the following :
Length L = 11.8
Charge = 29nC = 29 × 10^-9 C
Linear charge density λ = 1.4 × 10^-7 C/m
Radius (r) = 2cm = 2/100 = 0.02 m
Using the relation:
E = 2kλ/r ; F =qE
F = 2kλq/L × ∫dr/r
F = 2*k*q*λ/L × (In(0.02 + L) - In(0.02))
2*k*q*λ/L = [2 × (9 * 10^9) * (29 * 10^9) * (1.4 * 10^-7)]/ 0.118] = 6193.2203 × 10^(9 - 9 - 7) = 6193.2203 × 10^-7 = 6.1932203 × 10^-4
In(0.02 + 0.118) - In(0.02) = In(0.138) - In(0.02) = 1.9315214
Hence,
(6.1932203 × 10^-4) × 1.9315214 = 11.962337 × 10^-4 N