I believe the correct answer from the choices listed above is the third option. <span>The force exerted by the book on the table is equal to the force exerted by the table which is 4.0 N. The book does not move so it must be that the forces are balanced. Hope this answers the question.</span>
Answer:

Explanation:
The definition of the intensity in terms of power is given by:

Where:
- P is the power
- A is the area
If the sound emits uniformly in all directions and that there are no reflections, we can assume the geometry of the wave sound is spherical.
Let's recall the area of a sphere is 
To the first location we have:

and to the second location we have:

Now, we can divide each intensity to find the second intensity.




I hope it helps you!
Answer:

Explanation:
Hello.
In this case, since the force is defined in terms of the mass and acceleration by:

We can easily compute the mass by solving for it:

Whereas the force is 182 N (kg*m/s²) and the acceleration is 13 m/s², therefore, we obtain:

Best regards.
Answer:
V = 11.83 m/s
Explanation:
Given the following data;
Mass = 2000 kg
Force = 10000N
Distance = 14 m
To find the final velocity of the car;
First of all, we would determine the acceleration of the car;
Acceleration = force/mass
Acceleration = 10000/2000
Acceleration = 5 m/s²
Next, we would use the third equation of motion to find the final velocity;
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
V² = 0² + 2*5*14
V² = 0 + 140
V = √140
V = 11.83 m/s